123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- % rubber: module pdftex
- \documentclass[english,aspectratio=43,8pt]{beamer}
- \usepackage{graphicx}
- \usepackage{amssymb}
- \usepackage{booktabs}
- \usepackage{siunitx}
- \usepackage{subcaption}
- \usepackage{marvosym}
- \usepackage{verbatim}
- \usepackage[normalem]{ulem} % Needed for /sout
- \newcommand{\pb}{\si{\pico\barn}}%
- \newcommand{\fb}{\si{\femto\barn}}%
- \newcommand{\invfb}{\si{\per\femto\barn}}
- \newcommand{\GeV}{\si{\giga\electronvolt}}
- \hypersetup{colorlinks=true,urlcolor=blue}
- \usetheme[]{bjeldbak}
- \begin{document}
- \title[e Reco. Validation]{Offline Electron Seeding Validation \-- Update}
- \author[C. Fangmeier]{\textbf{Caleb Fangmeier} \\ Ilya Kravchenko, Greg Snow}
- \institute[UNL]{University of Nebraska \-- Lincoln}
- \date{EGamma Workshop | November 21, 2017}
- \titlegraphic{%
- \begin{figure}
- \includegraphics[width=1in]{CMSlogo.png}\hspace{0.75in}\includegraphics[width=1in]{nebraska-n.png}
- \end{figure}
- }
- \begin{frame}[plain]
- \titlepage%
- \end{frame}
- \begin{frame}{Introduction}
- \begin{itemize}
- \item Our goal is to study \textbf{seeding} for the \textbf{offline} GSF tracking with the \textbf{new pixel detector}.
- \item Specifically, we want to optimize the window sizes used in the new pixel-matching scheme already implemented in HLT.
- \item Since last update\footnote{https://indico.cern.ch/event/662743/contributions/2744847/attachments/1534642/2403597/main.pdf},
- \begin{itemize}
- \item Migrated Code from \texttt{9\_0\_2} to \texttt{9\_2\_8}
- \item Integrated the new pixel matching into the trackingNtuple. (although still a work-in-progress)
- \item Regenerated \texttt{trackingNtuple}s for dataset \\
- {\tiny \vspace{0.05in}\hspace{-0.2in}\texttt{/ZToEE\_NNPDF30\_13TeV-powheg\_M\_120\_200/
- \vspace{-0.05in}\hspace{-0.2in}RunIISummer17DRStdmix-NZSFlatPU28to62\_92X\_upgrade2017\_realistic\_v10-v1/GEN-SIM-RAW}}\vspace{0.05in}
- \item Ongoing work happening here: \url{https://github.com/cfangmeier/cmssw/tree/ValidationGsfTracks928_dev}
- \end{itemize}
- \item This Talk:
- \begin{itemize}
- \item Description of current Offline electron seeding
- \item Description of current HLT (future Offline) electron seeding
- \item Plans for 2018
- \end{itemize}
- \end{itemize}
- \end{frame}
- \begin{frame}{Pair Electron Seeding I}
- \begin{columns}
- \begin{column}{0.75\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding1.png}
- \end{figure}
- \end{column}
- \begin{column}{0.25\textwidth}
- \begin{figure}
- \hspace{-1in}
- \vspace{-1in}
- \includegraphics[width=1.8\textwidth]{diagrams/window1.png}
- \end{figure}
- \end{column}
- \end{columns}
- \vfill
- \footnotesize{Windows from \url{https://indico.cern.ch/event/611042/contributions/2464057/attachments/1406271/2148742/ElectronTracking30112016.pdf}}
- \end{frame}
- \begin{frame}{Pair Electron Seeding II}
- \begin{columns}
- \begin{column}{0.66\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding2.png}
- \end{figure}
- \end{column}
- \begin{column}{0.33\textwidth}
- \begin{figure}
- \hspace{-0.75in}
- \vspace{1in}
- \includegraphics[width=1.5\textwidth]{diagrams/window2.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Pair Electron Seeding III}
- \begin{center}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding3.png}
- \end{figure}
- \end{center}
- \end{frame}
- \begin{frame}{Triplet Electron Seeding - Setup}
- \begin{columns}
- \begin{column}{0.45\textwidth}
- \begin{itemize}
- \item Begin with ECAL super cluster and beam spot
- \end{itemize}
- \end{column}
- \begin{column}{0.55\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/seeding_base.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Triplet Electron Seeding - Introduce Seed}
- \begin{columns}
- \begin{column}{0.45\textwidth}
- \begin{itemize}
- \item Now, examine, one-by-one seeds from general tracking*
- \item Note that we do not look at all hits in an event, but rather rely on general tracking to identify seeds.
- \end{itemize}
- \vspace{0.1in}
- \hline
- \vspace{0.1in}
- {\footnotesize *initialStepSeeds, highPtTripletStepSeeds, mixedTripletStepSeeds, pixelLessStepSeeds, tripletElectronSeeds, pixelPairElectronSeeds, stripPairElectronSeeds}
- \end{column}
- \begin{column}{0.55\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/seeding_step1.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Triplet Electron Seeding - Match First Hit}
- \begin{columns}
- \begin{column}{0.5\textwidth}
- \begin{itemize}
- \item Using the beam spot, the SC position, and SC energy, propagate a path through the pixels.
- \item Next, require the first hit to be within a $\delta\phi$ and $\delta z$ window. ($\delta\phi$ and $\delta R$ for FPIX)
- \item $\delta z$ window for first hit is huge as SC and beam spot positions give very little information about $z$.
- \end{itemize}
- \end{column}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/seeding_step2.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Triplet Electron Seeding - Extrapolate Vertex}
- \begin{columns}
- \begin{column}{0.45\textwidth}
- \begin{itemize}
- \item Once we have a matched hit, use it with the SC position, to find the vertex z.
- \item Vertex x and y are still the beam spot's.
- \item Just a simple linear extrapolation.
- \end{itemize}
- \end{column}
- \begin{column}{0.55\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/vertex_z.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Triplet Electron Seeding - Match Other Hits}
- \begin{columns}
- \begin{column}{0.45\textwidth}
- \begin{itemize}
- \item Now forget the SC position, and propagate a new track based on the vertex and first hit positions, and the SC energy.
- \item Progress one-by-one through the remaining hits in the seed and require each one fit within a specified window around the track.
- \item Quit when all hits are matched, or a hit falls outside the window. No skipping is allowed.
- \item However, \emph{layer} skipping is not ruled out if the original seed is missing a hit in a layer
- \end{itemize}
- \end{column}
- \begin{column}{0.55\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/seeding_step3.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Triplet Electron Seeding - Window Sizes}
- \begin{columns}
- \begin{column}{0.55\textwidth}
- \begin{itemize}
- \item The $\delta\phi$ and $\delta R/z$ windows for each hit are defined using three parameters.
- \begin{itemize}
- \item \texttt{highEt}
- \item \texttt{highEtThreshold}
- \item \texttt{lowEtGradient}
- \end{itemize}
- \item From these, the window size is calculated as \\
- $\texttt{highEt} + \min(0,\texttt{Et}-\texttt{highEtThreshold})*\texttt{lowEtGradient}$.
- \item For the first hit, these parameters for the $\delta \phi$ window are,
- \begin{itemize}
- \item $\texttt{highEt}=0.05$
- \item $\texttt{highEtThreshold}=20$
- \item $\texttt{lowEtGradient}=-0.002$
- \end{itemize}
- \item For the first hit, these parameters for the $\delta \phi$ window are,
- \end{itemize}
- \end{column}
- \begin{column}{0.45\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{figures/dphi1_max.png}
- \end{figure}
- \end{column}
- \end{columns}
- \vspace{0.1in} \hrule \vspace{0.1in}
- These parameters can be specified for each successive hit, and in bins of $\eta$, so optimization is a challenge!
- \end{frame}
- \begin{frame}{Triplet Electron Seeding - Handle Missing Hits}
- \begin{columns}
- \begin{column}{0.45\textwidth}
- \begin{itemize}
- \item Finally, calculate the expected number of hits based on the number of working pixel modules the track passes through.
- \item Require exact$^1$ number of matched hits depending on the expected number of hits.
- \begin{itemize}
- \item If $N_{\textrm{exp}}=4$, require $N_{\textrm{match}}=3$
- \item If $N_{\textrm{exp}}<4$, require $N_{\textrm{match}}=2$
- \end{itemize}
- \item If the seed passes all requirements, all information, including
- \begin{itemize}
- \item Super cluster
- \item Original Seed
- \item Residuals (For both charge hypotheses)
- \end{itemize}
- are wrapped up and sent downstream to GSF tracking
- \end{itemize}
- \end{column}
- \begin{column}{0.55\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/seeding_step4.png}
- \end{figure}
- \end{column}
- \end{columns}
- \vspace{0.1in} \hrule \vspace{0.1in}
- {\footnotesize $^1$Exact, rather than minimum to deal with duplicate seeds in input collection. Could switch to minimum with offline cross-cleaned seeds.}
- \end{frame}
- \begin{frame}{Outlook and Plans for 2018}
- \begin{itemize}
- \item Construct framework to measure efficiencies and fake-rates using MC-truth information.
- \item Use this framework to identify sources of inefficiency.
- \item Finally, optimize the window sizes for offline reconstruction.
- \end{itemize}
- \end{frame}
- \end{document}
|