main.tex 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262
  1. % rubber: module pdftex
  2. \documentclass[english,aspectratio=43,8pt]{beamer}
  3. \usepackage{graphicx}
  4. \usepackage{amssymb}
  5. \usepackage{booktabs}
  6. \usepackage{siunitx}
  7. \usepackage{subcaption}
  8. \usepackage{marvosym}
  9. \usepackage{verbatim}
  10. \usepackage[normalem]{ulem} % Needed for /sout
  11. \newcommand{\pb}{\si{\pico\barn}}%
  12. \newcommand{\fb}{\si{\femto\barn}}%
  13. \newcommand{\invfb}{\si{\per\femto\barn}}
  14. \newcommand{\GeV}{\si{\giga\electronvolt}}
  15. \hypersetup{colorlinks=true,urlcolor=blue}
  16. \usetheme[]{bjeldbak}
  17. \begin{document}
  18. \title[e Reco. Validation]{Offline Electron Seeding Validation \-- Update}
  19. \author[C. Fangmeier]{\textbf{Caleb Fangmeier} \\ Ilya Kravchenko, Greg Snow}
  20. \institute[UNL]{University of Nebraska \-- Lincoln}
  21. \date{EGamma Workshop | November 21, 2017}
  22. \titlegraphic{%
  23. \begin{figure}
  24. \includegraphics[width=1in]{CMSlogo.png}\hspace{0.75in}\includegraphics[width=1in]{nebraska-n.png}
  25. \end{figure}
  26. }
  27. \begin{frame}[plain]
  28. \titlepage%
  29. \end{frame}
  30. \begin{frame}{Introduction}
  31. \begin{itemize}
  32. \item Our goal is to study \textbf{seeding} for the \textbf{offline} GSF tracking with the \textbf{new pixel detector}.
  33. \item Specifically, we want to optimize the window sizes used in the new pixel-matching scheme already implemented in HLT.
  34. \item Since last update\footnote{https://indico.cern.ch/event/662743/contributions/2744847/attachments/1534642/2403597/main.pdf},
  35. \begin{itemize}
  36. \item Migrated Code from \texttt{9\_0\_2} to \texttt{9\_2\_8}
  37. \item Integrated the new pixel matching into the trackingNtuple. (although still a work-in-progress)
  38. \item Regenerated \texttt{trackingNtuple}s for dataset \\
  39. {\tiny \vspace{0.05in}\hspace{-0.2in}\texttt{/ZToEE\_NNPDF30\_13TeV-powheg\_M\_120\_200/
  40. \vspace{-0.05in}\hspace{-0.2in}RunIISummer17DRStdmix-NZSFlatPU28to62\_92X\_upgrade2017\_realistic\_v10-v1/GEN-SIM-RAW}}\vspace{0.05in}
  41. \item Ongoing work happening here: \url{https://github.com/cfangmeier/cmssw/tree/ValidationGsfTracks928_dev}
  42. \end{itemize}
  43. \item This Talk:
  44. \begin{itemize}
  45. \item Description of current Offline electron seeding
  46. \item Description of current HLT (future Offline) electron seeding
  47. \item Plans for 2018
  48. \end{itemize}
  49. \end{itemize}
  50. \end{frame}
  51. \begin{frame}{Pair Electron Seeding I}
  52. \begin{columns}
  53. \begin{column}{0.75\textwidth}
  54. \begin{figure}
  55. \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding1.png}
  56. \end{figure}
  57. \end{column}
  58. \begin{column}{0.25\textwidth}
  59. \begin{figure}
  60. \hspace{-1in}
  61. \vspace{-1in}
  62. \includegraphics[width=1.8\textwidth]{diagrams/window1.png}
  63. \end{figure}
  64. \end{column}
  65. \end{columns}
  66. \vfill
  67. \footnotesize{Windows from \url{https://indico.cern.ch/event/611042/contributions/2464057/attachments/1406271/2148742/ElectronTracking30112016.pdf}}
  68. \end{frame}
  69. \begin{frame}{Pair Electron Seeding II}
  70. \begin{columns}
  71. \begin{column}{0.66\textwidth}
  72. \begin{figure}
  73. \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding2.png}
  74. \end{figure}
  75. \end{column}
  76. \begin{column}{0.33\textwidth}
  77. \begin{figure}
  78. \hspace{-0.75in}
  79. \vspace{1in}
  80. \includegraphics[width=1.5\textwidth]{diagrams/window2.png}
  81. \end{figure}
  82. \end{column}
  83. \end{columns}
  84. \end{frame}
  85. \begin{frame}{Pair Electron Seeding III}
  86. \begin{center}
  87. \begin{figure}
  88. \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding3.png}
  89. \end{figure}
  90. \end{center}
  91. \end{frame}
  92. \begin{frame}{Triplet Electron Seeding - Setup}
  93. \begin{columns}
  94. \begin{column}{0.45\textwidth}
  95. \begin{itemize}
  96. \item Begin with ECAL super cluster and beam spot
  97. \end{itemize}
  98. \end{column}
  99. \begin{column}{0.55\textwidth}
  100. \begin{figure}
  101. \includegraphics[width=\textwidth]{diagrams/seeding_base.png}
  102. \end{figure}
  103. \end{column}
  104. \end{columns}
  105. \end{frame}
  106. \begin{frame}{Triplet Electron Seeding - Introduce Seed}
  107. \begin{columns}
  108. \begin{column}{0.45\textwidth}
  109. \begin{itemize}
  110. \item Now, examine, one-by-one seeds from general tracking*
  111. \item Note that we do not look at all hits in an event, but rather rely on general tracking to identify seeds.
  112. \end{itemize}
  113. \vspace{0.1in}
  114. \hline
  115. \vspace{0.1in}
  116. {\footnotesize *initialStepSeeds, highPtTripletStepSeeds, mixedTripletStepSeeds, pixelLessStepSeeds, tripletElectronSeeds, pixelPairElectronSeeds, stripPairElectronSeeds}
  117. \end{column}
  118. \begin{column}{0.55\textwidth}
  119. \begin{figure}
  120. \includegraphics[width=\textwidth]{diagrams/seeding_step1.png}
  121. \end{figure}
  122. \end{column}
  123. \end{columns}
  124. \end{frame}
  125. \begin{frame}{Triplet Electron Seeding - Match First Hit}
  126. \begin{columns}
  127. \begin{column}{0.5\textwidth}
  128. \begin{itemize}
  129. \item Using the beam spot, the SC position, and SC energy, propagate a path through the pixels.
  130. \item Next, require the first hit to be within a $\delta\phi$ and $\delta z$ window. ($\delta\phi$ and $\delta R$ for FPIX)
  131. \item $\delta z$ window for first hit is huge as SC and beam spot positions give very little information about $z$.
  132. \end{itemize}
  133. \end{column}
  134. \begin{column}{0.5\textwidth}
  135. \begin{figure}
  136. \includegraphics[width=\textwidth]{diagrams/seeding_step2.png}
  137. \end{figure}
  138. \end{column}
  139. \end{columns}
  140. \end{frame}
  141. \begin{frame}{Triplet Electron Seeding - Extrapolate Vertex}
  142. \begin{columns}
  143. \begin{column}{0.45\textwidth}
  144. \begin{itemize}
  145. \item Once we have a matched hit, use it with the SC position, to find the vertex z.
  146. \item Vertex x and y are still the beam spot's.
  147. \item Just a simple linear extrapolation.
  148. \end{itemize}
  149. \end{column}
  150. \begin{column}{0.55\textwidth}
  151. \begin{figure}
  152. \includegraphics[width=\textwidth]{diagrams/vertex_z.png}
  153. \end{figure}
  154. \end{column}
  155. \end{columns}
  156. \end{frame}
  157. \begin{frame}{Triplet Electron Seeding - Match Other Hits}
  158. \begin{columns}
  159. \begin{column}{0.45\textwidth}
  160. \begin{itemize}
  161. \item Now forget the SC position, and propagate a new track based on the vertex and first hit positions, and the SC energy.
  162. \item Progress one-by-one through the remaining hits in the seed and require each one fit within a specified window around the track.
  163. \item Quit when all hits are matched, or a hit falls outside the window. No skipping is allowed.
  164. \item However, \emph{layer} skipping is not ruled out if the original seed is missing a hit in a layer
  165. \end{itemize}
  166. \end{column}
  167. \begin{column}{0.55\textwidth}
  168. \begin{figure}
  169. \includegraphics[width=\textwidth]{diagrams/seeding_step3.png}
  170. \end{figure}
  171. \end{column}
  172. \end{columns}
  173. \end{frame}
  174. \begin{frame}{Triplet Electron Seeding - Window Sizes}
  175. \begin{columns}
  176. \begin{column}{0.55\textwidth}
  177. \begin{itemize}
  178. \item The $\delta\phi$ and $\delta R/z$ windows for each hit are defined using three parameters.
  179. \begin{itemize}
  180. \item \texttt{highEt}
  181. \item \texttt{highEtThreshold}
  182. \item \texttt{lowEtGradient}
  183. \end{itemize}
  184. \item From these, the window size is calculated as \\
  185. $\texttt{highEt} + \min(0,\texttt{Et}-\texttt{highEtThreshold})*\texttt{lowEtGradient}$.
  186. \item For the first hit, these parameters for the $\delta \phi$ window are,
  187. \begin{itemize}
  188. \item $\texttt{highEt}=0.05$
  189. \item $\texttt{highEtThreshold}=20$
  190. \item $\texttt{lowEtGradient}=-0.002$
  191. \end{itemize}
  192. \item For the first hit, these parameters for the $\delta \phi$ window are,
  193. \end{itemize}
  194. \end{column}
  195. \begin{column}{0.45\textwidth}
  196. \begin{figure}
  197. \includegraphics[width=\textwidth]{figures/dphi1_max.png}
  198. \end{figure}
  199. \end{column}
  200. \end{columns}
  201. \vspace{0.1in} \hrule \vspace{0.1in}
  202. These parameters can be specified for each successive hit, and in bins of $\eta$, so optimization is a challenge!
  203. \end{frame}
  204. \begin{frame}{Triplet Electron Seeding - Handle Missing Hits}
  205. \begin{columns}
  206. \begin{column}{0.45\textwidth}
  207. \begin{itemize}
  208. \item Finally, calculate the expected number of hits based on the number of working pixel modules the track passes through.
  209. \item Require exact$^1$ number of matched hits depending on the expected number of hits.
  210. \begin{itemize}
  211. \item If $N_{\textrm{exp}}=4$, require $N_{\textrm{match}}=3$
  212. \item If $N_{\textrm{exp}}<4$, require $N_{\textrm{match}}=2$
  213. \end{itemize}
  214. \item If the seed passes all requirements, all information, including
  215. \begin{itemize}
  216. \item Super cluster
  217. \item Original Seed
  218. \item Residuals (For both charge hypotheses)
  219. \end{itemize}
  220. are wrapped up and sent downstream to GSF tracking
  221. \end{itemize}
  222. \end{column}
  223. \begin{column}{0.55\textwidth}
  224. \begin{figure}
  225. \includegraphics[width=\textwidth]{diagrams/seeding_step4.png}
  226. \end{figure}
  227. \end{column}
  228. \end{columns}
  229. \vspace{0.1in} \hrule \vspace{0.1in}
  230. {\footnotesize $^1$Exact, rather than minimum to deal with duplicate seeds in input collection. Could switch to minimum with offline cross-cleaned seeds.}
  231. \end{frame}
  232. \begin{frame}{Outlook and Plans for 2018}
  233. \begin{itemize}
  234. \item Construct framework to measure efficiencies and fake-rates using MC-truth information.
  235. \item Use this framework to identify sources of inefficiency.
  236. \item Finally, optimize the window sizes for offline reconstruction.
  237. \end{itemize}
  238. \end{frame}
  239. \end{document}