main.tex 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216
  1. % rubber: module pdftex
  2. \documentclass[english,aspectratio=43,8pt]{beamer}
  3. \usepackage{graphicx}
  4. \usepackage{amssymb}
  5. \usepackage{booktabs}
  6. \usepackage{siunitx}
  7. \usepackage{subcaption}
  8. \usepackage{marvosym}
  9. \usepackage{verbatim}
  10. \usepackage[normalem]{ulem} % Needed for /sout
  11. \newcommand{\pb}{\si{\pico\barn}}%
  12. \newcommand{\fb}{\si{\femto\barn}}%
  13. \newcommand{\invfb}{\si{\per\femto\barn}}
  14. \newcommand{\GeV}{\si{\giga\electronvolt}}
  15. \hypersetup{colorlinks=true,urlcolor=blue}
  16. \usetheme[]{bjeldbak}
  17. \begin{document}
  18. \title[e Reco. Validation]{Offline Electron Seeding Validation \-- Update}
  19. \author[C. Fangmeier]{\textbf{Caleb Fangmeier} \\ Ilya Kravchenko, Greg Snow}
  20. \institute[UNL]{University of Nebraska \-- Lincoln}
  21. \date{October 4, 2017}
  22. \titlegraphic{%
  23. \begin{figure}
  24. \includegraphics[width=1in]{CMSlogo.png}\hspace{0.75in}\includegraphics[width=1in]{nebraska-n.png}
  25. \end{figure}
  26. }
  27. \begin{frame}[plain]
  28. \titlepage%
  29. \end{frame}
  30. \begin{frame}{Introduction}
  31. \begin{itemize}
  32. \item Our goal is to study \textbf{seeding} for the \textbf{offline} Gsf tracking with the \textbf{new pixel detector}.
  33. % \item Study window sizes for pixel matching
  34. % \item Implement
  35. \item Previous talk\footnote{https://indico.cern.ch/event/616443/contributions/2669480/attachments/1496854/2329372/main.pdf} gave introduction/motivation to approach
  36. \item Since Then,
  37. \begin{itemize}
  38. \item Migrated Code from \texttt{8\_1\_0} to \texttt{9\_0\_2}
  39. \item Regenerated \texttt{trackingNtuple}s for dataset \\
  40. {\tiny \vspace{0.05in}\hspace{-0.2in}\texttt{/DYJetsToLL\_M-50\_TuneCUETP8M1\_13TeV-madgraphMLM-pythia8 \\
  41. \vspace{-0.05in}\hspace{-0.2in}/PhaseISpring17DR-FlatPU28to62HcalNZS\_90X\_upgrade2017\_realistic\_v20-v1/GEN-SIM-RAW}}
  42. \item Calculated $\Delta \phi_{1,2}$/$\Delta z_{1,2}$ for distances between extrapolated SC and reconstructed pixel hit
  43. \item Added additional detector information (Ladder/Blade) for matched hits
  44. \end{itemize}
  45. \end{itemize}
  46. \end{frame}
  47. \begin{frame}{Definitions}
  48. \begin{itemize}
  49. \item $\Delta \phi/z_{1}$ \-- Distance between \texttt{RecHit} and extrapolated impact position for first matched hit
  50. \item $\Delta \phi/z_{2}$ \-- Distance between \texttt{RecHit} and extrapolated impact position for second matched hit
  51. \item $\Delta \phi/z_1^{\textrm{sim}}$ \-- Distance between \texttt{RecHit} and \texttt{SimHit} for 1st innermost hit in \texttt{Seed}.
  52. \item $\Delta \phi/z_2^{\textrm{sim}}$ \-- Distance between \texttt{RecHit} and \texttt{SimHit} for 2nd innermost hit in \texttt{Seed}.
  53. \end{itemize}
  54. \end{frame}
  55. \begin{frame}{Comparing $\Delta \phi_1$ and $\Delta \phi_1^{\textrm{sim}}$ Resolution}
  56. \begin{columns}
  57. \begin{column}{0.4\textwidth}
  58. \begin{itemize}
  59. \item $\sigma_{\Delta \phi_1}/\sigma_{\Delta \phi_1^{\textrm{sim}}} \approx 175$
  60. \item But these are measuring quite different quantities!
  61. \item $\Delta \phi_1^{\textrm{sim}}$ is effectively just the single-hit pixel resultion
  62. \item While $\Delta \phi_1$ is affected by SC position/energy resolution and beam spot.
  63. \item So not really an apples-to-apples comparison.
  64. \end{itemize}
  65. \end{column}
  66. \begin{column}{0.6\textwidth}
  67. \begin{figure}
  68. \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_phi1_B1.png}
  69. \end{figure}
  70. \end{column}
  71. \end{columns}
  72. \end{frame}
  73. \begin{frame}{Hits in BPIX Layer 2 }
  74. \begin{columns}
  75. \begin{column}{0.4\textwidth}
  76. \begin{itemize}
  77. \item Same as previous slide, but with hits in BPIX L2 instead of L1.
  78. \item Note that $\sigma_{\Delta \phi_1}$ is almost unchanged from the L1 value (74.2 millirad)
  79. \item However, $\sigma_{\Delta \phi_1^{\textrm{sim}}}$ decreases by $\approx 1/r$
  80. \item This is because single-hit resultion is independent of layer.
  81. \end{itemize}
  82. \end{column}
  83. \begin{column}{0.6\textwidth}
  84. \begin{figure}
  85. \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_phi1_B2.png}
  86. \end{figure}
  87. \end{column}
  88. \end{columns}
  89. \end{frame}
  90. \begin{frame}{What about 2nd \sout{Breakfast} Hits?}
  91. \begin{columns}
  92. \begin{column}{0.4\textwidth}
  93. \begin{itemize}
  94. \item $\sigma_{\Delta \phi_2^{\textrm{sim}}}$ is slightly smaller than $\sigma_{\Delta \phi_1^{\textrm{sim}}}$
  95. \item $\sigma_{\Delta \phi_2}$ is about 3.4 times smaller than $\sigma_{\Delta \phi_1}$, but the width of the core is about the same.
  96. \item Interesting side-band feature. Do experts recognize this?
  97. \end{itemize}
  98. \end{column}
  99. \begin{column}{0.6\textwidth}
  100. \begin{figure}
  101. \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_phi2_B2.png}
  102. \end{figure}
  103. \end{column}
  104. \end{columns}
  105. \end{frame}
  106. \begin{frame}{What about $\Delta z$?}
  107. \begin{columns}
  108. \begin{column}{0.4\textwidth}
  109. \begin{itemize}
  110. \item The distribution of $\Delta z_1$ is essentially flat within the window ($\pm 0.5$ cm).
  111. \item Not surprising due to the rough extrapolation and high likelihood of unrelated hits in area of extrapolated point.
  112. \end{itemize}
  113. \end{column}
  114. \begin{column}{0.6\textwidth}
  115. \begin{figure}
  116. \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_z1_B1.png}
  117. \end{figure}
  118. \end{column}
  119. \end{columns}
  120. \end{frame}
  121. \begin{frame}{And finally, what about $\Delta z$ for second hits?}
  122. \begin{columns}
  123. \begin{column}{0.4\textwidth}
  124. \begin{itemize}
  125. \item Current window size ($\pm 900 \mu$m) still seems appropriate, but maybe could be optimized?
  126. \item $\Delta z_2^{\textrm{sim}}$ resolution almost identical to $\Delta z_1^{\textrm{sim}}$
  127. \item Implies single-hit resulation is independent of whether the hit is the 1st or 2nd innermost in seed
  128. \end{itemize}
  129. \end{column}
  130. \begin{column}{0.6\textwidth}
  131. \begin{figure}
  132. \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_z2_B2.png}
  133. \end{figure}
  134. \end{column}
  135. \end{columns}
  136. \end{frame}
  137. \begin{frame}{Outlook}
  138. \begin{itemize}
  139. \item Equivalent studies for FPIX
  140. \item Define and measure hit inefficiencies
  141. \item Test independently effects of supercluster position and energy mis-measurement
  142. \item Optimize window sizes
  143. \item Test triplet (instead of pair) matching
  144. \item Suggestions (and priorities!) from experts?
  145. \end{itemize}
  146. \end{frame}
  147. \begin{frame}[noframenumbering]
  148. \centering
  149. {\Huge BACKUP }
  150. \end{frame}
  151. \begin{frame}[noframenumbering]{Gsf Electron Seeding I}
  152. \begin{columns}
  153. \begin{column}{0.75\textwidth}
  154. \begin{figure}
  155. \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding1.png}
  156. \end{figure}
  157. \end{column}
  158. \begin{column}{0.25\textwidth}
  159. \begin{figure}
  160. \hspace{-1in}
  161. \vspace{-1in}
  162. \includegraphics[width=1.8\textwidth]{diagrams/window1.png}
  163. \end{figure}
  164. \end{column}
  165. \end{columns}
  166. \vfill
  167. \footnotesize{Windows from \url{https://indico.cern.ch/event/611042/contributions/2464057/attachments/1406271/2148742/ElectronTracking30112016.pdf}}
  168. \end{frame}
  169. \begin{frame}[noframenumbering]{Gsf Electron Seeding II}
  170. \begin{columns}
  171. \begin{column}{0.66\textwidth}
  172. \begin{figure}
  173. \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding2.png}
  174. \end{figure}
  175. \end{column}
  176. \begin{column}{0.33\textwidth}
  177. \begin{figure}
  178. \hspace{-0.75in}
  179. \vspace{1in}
  180. \includegraphics[width=1.5\textwidth]{diagrams/window2.png}
  181. \end{figure}
  182. \end{column}
  183. \end{columns}
  184. \end{frame}
  185. \begin{frame}[noframenumbering]{Gsf Electron Seeding III}
  186. \begin{center}
  187. \begin{figure}
  188. \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding3.png}
  189. \end{figure}
  190. \end{center}
  191. \end{frame}
  192. \end{document}