% rubber: module pdftex \documentclass[english,aspectratio=43,8pt]{beamer} \usepackage{graphicx} \usepackage{amssymb} \usepackage{booktabs} \usepackage{siunitx} \usepackage{subcaption} \usepackage{marvosym} \usepackage{verbatim} \usepackage[normalem]{ulem} % Needed for /sout \newcommand{\pb}{\si{\pico\barn}}% \newcommand{\fb}{\si{\femto\barn}}% \newcommand{\invfb}{\si{\per\femto\barn}} \newcommand{\GeV}{\si{\giga\electronvolt}} \hypersetup{colorlinks=true,urlcolor=blue} \usetheme[]{bjeldbak} \begin{document} \title[e Reco. Validation]{Offline Electron Seeding Validation \-- Update} \author[C. Fangmeier]{\textbf{Caleb Fangmeier} \\ Ilya Kravchenko, Greg Snow} \institute[UNL]{University of Nebraska \-- Lincoln} \date{October 4, 2017} \titlegraphic{% \begin{figure} \includegraphics[width=1in]{CMSlogo.png}\hspace{0.75in}\includegraphics[width=1in]{nebraska-n.png} \end{figure} } \begin{frame}[plain] \titlepage% \end{frame} \begin{frame}{Introduction} \begin{itemize} \item Our goal is to study \textbf{seeding} for the \textbf{offline} Gsf tracking with the \textbf{new pixel detector}. % \item Study window sizes for pixel matching % \item Implement \item Previous talk\footnote{https://indico.cern.ch/event/616443/contributions/2669480/attachments/1496854/2329372/main.pdf} gave introduction/motivation to approach \item Since Then, \begin{itemize} \item Migrated Code from \texttt{8\_1\_0} to \texttt{9\_0\_2} \item Regenerated \texttt{trackingNtuple}s for dataset \\ {\tiny \vspace{0.05in}\hspace{-0.2in}\texttt{/DYJetsToLL\_M-50\_TuneCUETP8M1\_13TeV-madgraphMLM-pythia8 \\ \vspace{-0.05in}\hspace{-0.2in}/PhaseISpring17DR-FlatPU28to62HcalNZS\_90X\_upgrade2017\_realistic\_v20-v1/GEN-SIM-RAW}} \item Calculated $\Delta \phi_{1,2}$/$\Delta z_{1,2}$ for distances between extrapolated SC and reconstructed pixel hit \item Added additional detector information (Ladder/Blade) for matched hits \end{itemize} \end{itemize} \end{frame} \begin{frame}{Definitions} \begin{itemize} \item $\Delta \phi/z_{1}$ \-- Distance between \texttt{RecHit} and extrapolated impact position for first matched hit \item $\Delta \phi/z_{2}$ \-- Distance between \texttt{RecHit} and extrapolated impact position for second matched hit \item $\Delta \phi/z_1^{\textrm{sim}}$ \-- Distance between \texttt{RecHit} and \texttt{SimHit} for 1st innermost hit in \texttt{Seed}. \item $\Delta \phi/z_2^{\textrm{sim}}$ \-- Distance between \texttt{RecHit} and \texttt{SimHit} for 2nd innermost hit in \texttt{Seed}. \end{itemize} \end{frame} \begin{frame}{Comparing $\Delta \phi_1$ and $\Delta \phi_1^{\textrm{sim}}$ Resolution} \begin{columns} \begin{column}{0.4\textwidth} \begin{itemize} \item $\sigma_{\Delta \phi_1}/\sigma_{\Delta \phi_1^{\textrm{sim}}} \approx 175$ \item But these are measuring quite different quantities! \item $\Delta \phi_1^{\textrm{sim}}$ is effectively just the single-hit pixel resultion \item While $\Delta \phi_1$ is affected by SC position/energy resolution and beam spot. \item So not really an apples-to-apples comparison. \end{itemize} \end{column} \begin{column}{0.6\textwidth} \begin{figure} \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_phi1_B1.png} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{Hits in BPIX Layer 2 } \begin{columns} \begin{column}{0.4\textwidth} \begin{itemize} \item Same as previous slide, but with hits in BPIX L2 instead of L1. \item Note that $\sigma_{\Delta \phi_1}$ is almost unchanged from the L1 value (74.2 millirad) \item However, $\sigma_{\Delta \phi_1^{\textrm{sim}}}$ decreases by $\approx 1/r$ \item This is because single-hit resultion is independent of layer. \end{itemize} \end{column} \begin{column}{0.6\textwidth} \begin{figure} \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_phi1_B2.png} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{What about 2nd \sout{Breakfast} Hits?} \begin{columns} \begin{column}{0.4\textwidth} \begin{itemize} \item $\sigma_{\Delta \phi_2^{\textrm{sim}}}$ is slightly smaller than $\sigma_{\Delta \phi_1^{\textrm{sim}}}$ \item $\sigma_{\Delta \phi_2}$ is about 3.4 times smaller than $\sigma_{\Delta \phi_1}$, but the width of the core is about the same. \item Interesting side-band feature. Do experts recognize this? \end{itemize} \end{column} \begin{column}{0.6\textwidth} \begin{figure} \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_phi2_B2.png} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{What about $\Delta z$?} \begin{columns} \begin{column}{0.4\textwidth} \begin{itemize} \item The distribution of $\Delta z_1$ is essentially flat within the window ($\pm 0.5$ cm). \item Not surprising due to the rough extrapolation and high likelihood of unrelated hits in area of extrapolated point. \end{itemize} \end{column} \begin{column}{0.6\textwidth} \begin{figure} \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_z1_B1.png} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{And finally, what about $\Delta z$ for second hits?} \begin{columns} \begin{column}{0.4\textwidth} \begin{itemize} \item Current window size ($\pm 900 \mu$m) still seems appropriate, but maybe could be optimized? \item $\Delta z_2^{\textrm{sim}}$ resolution almost identical to $\Delta z_1^{\textrm{sim}}$ \item Implies single-hit resulation is independent of whether the hit is the 1st or 2nd innermost in seed \end{itemize} \end{column} \begin{column}{0.6\textwidth} \begin{figure} \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_z2_B2.png} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{Outlook} \begin{itemize} \item Equivalent studies for FPIX \item Define and measure hit inefficiencies \item Test independently effects of supercluster position and energy mis-measurement \item Optimize window sizes \item Test triplet (instead of pair) matching \item Suggestions (and priorities!) from experts? \end{itemize} \end{frame} \begin{frame}[noframenumbering] \centering {\Huge BACKUP } \end{frame} \begin{frame}[noframenumbering]{Gsf Electron Seeding I} \begin{columns} \begin{column}{0.75\textwidth} \begin{figure} \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding1.png} \end{figure} \end{column} \begin{column}{0.25\textwidth} \begin{figure} \hspace{-1in} \vspace{-1in} \includegraphics[width=1.8\textwidth]{diagrams/window1.png} \end{figure} \end{column} \end{columns} \vfill \footnotesize{Windows from \url{https://indico.cern.ch/event/611042/contributions/2464057/attachments/1406271/2148742/ElectronTracking30112016.pdf}} \end{frame} \begin{frame}[noframenumbering]{Gsf Electron Seeding II} \begin{columns} \begin{column}{0.66\textwidth} \begin{figure} \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding2.png} \end{figure} \end{column} \begin{column}{0.33\textwidth} \begin{figure} \hspace{-0.75in} \vspace{1in} \includegraphics[width=1.5\textwidth]{diagrams/window2.png} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}[noframenumbering]{Gsf Electron Seeding III} \begin{center} \begin{figure} \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding3.png} \end{figure} \end{center} \end{frame} \end{document}