|
@@ -1,7 +1,7 @@
|
|
|
|
|
|
% rubber: module pdftex
|
|
|
|
|
|
-\documentclass[english,aspectratio=43,9pt]{beamer}
|
|
|
+\documentclass[english,aspectratio=43,8pt]{beamer}
|
|
|
\usepackage{graphicx}
|
|
|
\usepackage{amssymb}
|
|
|
\usepackage{booktabs}
|
|
@@ -9,6 +9,7 @@
|
|
|
\usepackage{subcaption}
|
|
|
\usepackage{marvosym}
|
|
|
\usepackage{verbatim}
|
|
|
+\usepackage[normalem]{ulem} % Needed for /sout
|
|
|
|
|
|
\newcommand{\pb}{\si{\pico\barn}}%
|
|
|
\newcommand{\fb}{\si{\femto\barn}}%
|
|
@@ -21,10 +22,10 @@
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
|
-\title[e Reco. Validation]{Offline Electron Seeding Validation - Update}
|
|
|
+\title[e Reco. Validation]{Offline Electron Seeding Validation \-- Update}
|
|
|
\author[C. Fangmeier]{\textbf{Caleb Fangmeier} \\ Ilya Kravchenko, Greg Snow}
|
|
|
\institute[UNL]{University of Nebraska \-- Lincoln}
|
|
|
-\date{August 28, 2017}
|
|
|
+\date{October 4, 2017}
|
|
|
|
|
|
\titlegraphic{%
|
|
|
\begin{figure}
|
|
@@ -39,7 +40,9 @@
|
|
|
\begin{frame}{Introduction}
|
|
|
\begin{itemize}
|
|
|
\item Our goal is to study \textbf{seeding} for the \textbf{offline} Gsf tracking with the \textbf{new pixel detector}.
|
|
|
- \item \href{https://indico.cern.ch/event/616443/contributions/2669480/attachments/1496854/2329372/main.pdf}{Previous talk} gave introduction/motivation to approach
|
|
|
+ % \item Study window sizes for pixel matching
|
|
|
+ % \item Implement
|
|
|
+ \item Previous talk\footnote{https://indico.cern.ch/event/616443/contributions/2669480/attachments/1496854/2329372/main.pdf} gave introduction/motivation to approach
|
|
|
\item Since Then,
|
|
|
\begin{itemize}
|
|
|
\item Migrated Code from \texttt{8\_1\_0} to \texttt{9\_0\_2}
|
|
@@ -47,41 +50,161 @@
|
|
|
{\tiny \vspace{0.05in}\hspace{-0.2in}\texttt{/DYJetsToLL\_M-50\_TuneCUETP8M1\_13TeV-madgraphMLM-pythia8 \\
|
|
|
\vspace{-0.05in}\hspace{-0.2in}/PhaseISpring17DR-FlatPU28to62HcalNZS\_90X\_upgrade2017\_realistic\_v20-v1/GEN-SIM-RAW}}
|
|
|
\item Calculated $\Delta \phi_{1,2}$/$\Delta z_{1,2}$ for distances between extrapolated SC and reconstructed pixel hit
|
|
|
- \item In previous talk, gave distributions of the above for distances between
|
|
|
+ \item Added additional detector information (Ladder/Blade) for matched hits
|
|
|
\end{itemize}
|
|
|
\end{itemize}
|
|
|
\end{frame}
|
|
|
|
|
|
-\begin{frame}{First matched hit resolutions (\texttt{Simhit} \-- \texttt{RecHit})}
|
|
|
- \begin{figure}
|
|
|
- \includegraphics[height=3in]{figures/live/first_hits::rs:DY2LL@output_902results_root.png}
|
|
|
- \end{figure}
|
|
|
+\begin{frame}{Some Definitions}
|
|
|
+ \begin{itemize}
|
|
|
+ \item $\Delta \phi/z_{1}$ \-- Distance between \texttt{RecHit} and extrapolated impact position for first matched hit
|
|
|
+ \item $\Delta \phi/z_{2}$ \-- Distance between \texttt{RecHit} and extrapolated impact position for second matched hit
|
|
|
+ \item $\Delta \phi/z_1^{\textrm{sim}}$ \-- Distance between \texttt{RecHit} and \texttt{SimHit} for 1st innermost hit in \texttt{Seed}.
|
|
|
+ \item $\Delta \phi/z_2^{\textrm{sim}}$ \-- Distance between \texttt{RecHit} and \texttt{SimHit} for 2nd innermost hit in \texttt{Seed}.
|
|
|
+ \end{itemize}
|
|
|
\end{frame}
|
|
|
|
|
|
-\begin{frame}{First matched hit resolutions (SC Extrapolation)}
|
|
|
- \begin{figure}
|
|
|
- \includegraphics[height=3in]{figures/live/sc_extrapolation_first::rs:DY2LL@output_902results_root.png}
|
|
|
- \end{figure}
|
|
|
+\begin{frame}{Comparing $\Delta \phi_1$ and $\Delta \phi_1^{\textrm{sim}}$ Resolution}
|
|
|
+ \begin{columns}
|
|
|
+ \begin{column}{0.4\textwidth}
|
|
|
+ \begin{itemize}
|
|
|
+ \item $\sigma_{\Delta \phi_1}/\sigma_{\Delta \phi_1^{\textrm{sim}}} \approx 175$
|
|
|
+ \item But these are measuring quite different quantities!
|
|
|
+ \item $\Delta \phi_1^{\textrm{sim}}$ is effectively just the single-hit pixel resultion
|
|
|
+ \item While $\Delta \phi_1$ is affected by SC position/energy resolution and beam spot.
|
|
|
+ \item So not really an apples-to-apples comparison.
|
|
|
+ \end{itemize}
|
|
|
+ \end{column}
|
|
|
+ \begin{column}{0.6\textwidth}
|
|
|
+ \begin{figure}
|
|
|
+ \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_phi1_B1.png}
|
|
|
+ \end{figure}
|
|
|
+ \end{column}
|
|
|
+ \end{columns}
|
|
|
\end{frame}
|
|
|
|
|
|
-\begin{frame}{second matched hit resolutions (\texttt{Simhit} \-- \texttt{RecHit})}
|
|
|
- \begin{figure}
|
|
|
- \includegraphics[height=3in]{figures/live/second_hits::rs:DY2LL@output_902results_root.png}
|
|
|
- \end{figure}
|
|
|
+\begin{frame}{Hits in BPIX Layers 1 and 2 }
|
|
|
+ \begin{columns}
|
|
|
+ \begin{column}{0.4\textwidth}
|
|
|
+ \begin{itemize}
|
|
|
+ \item Same as previous slide, but with Hits in BPIX L2 instead of L1.
|
|
|
+ \item Note that $\sigma_{\Delta \phi_1}$ is almost unchanged from the L1 value (74.2 millirad)
|
|
|
+ \item However, $\sigma_{\Delta \phi_1^{\textrm{sim}}}$ decreases by $\approx 1/r$
|
|
|
+ \item This is because single-hit resultion is independent of layer.
|
|
|
+ \end{itemize}
|
|
|
+ \end{column}
|
|
|
+ \begin{column}{0.6\textwidth}
|
|
|
+ \begin{figure}
|
|
|
+ \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_phi1_B2.png}
|
|
|
+ \end{figure}
|
|
|
+ \end{column}
|
|
|
+ \end{columns}
|
|
|
\end{frame}
|
|
|
|
|
|
-\begin{frame}{Second matched hit resolutions (SC Extrapolation)}
|
|
|
- \begin{figure}
|
|
|
- \includegraphics[height=3in]{figures/live/sc_extrapolation_second::rs:DY2LL@output_902results_root.png}
|
|
|
- \end{figure}
|
|
|
+\begin{frame}{What about 2nd \sout{Breakfast} Hits?}
|
|
|
+ \begin{columns}
|
|
|
+ \begin{column}{0.4\textwidth}
|
|
|
+ \begin{itemize}
|
|
|
+ \item $\sigma_{\Delta \phi_2^{\textrm{sim}}}$ is slightly smaller than $\sigma_{\Delta \phi_1^{\textrm{sim}}}$
|
|
|
+ \item $\sigma_{\Delta \phi_2}$ is about 3.4 times smaller than $\sigma_{\Delta \phi_1}$, but the width of the core is about the same.
|
|
|
+ \item Interesting side-band feature. Do experts recognize this?
|
|
|
+ \end{itemize}
|
|
|
+ \end{column}
|
|
|
+ \begin{column}{0.6\textwidth}
|
|
|
+ \begin{figure}
|
|
|
+ \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_phi2_B2.png}
|
|
|
+ \end{figure}
|
|
|
+ \end{column}
|
|
|
+ \end{columns}
|
|
|
+\end{frame}
|
|
|
+
|
|
|
+\begin{frame}{What about $\Delta z$?}
|
|
|
+ \begin{columns}
|
|
|
+ \begin{column}{0.4\textwidth}
|
|
|
+ \begin{itemize}
|
|
|
+ \item The distribution of $\Delta z_1$ is essentially flat within the window ($\pm 0.5$ cm).
|
|
|
+ \item TODO: comment regarding why distribution is flat
|
|
|
+ \end{itemize}
|
|
|
+ \end{column}
|
|
|
+ \begin{column}{0.6\textwidth}
|
|
|
+ \begin{figure}
|
|
|
+ \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_z1_B1.png}
|
|
|
+ \end{figure}
|
|
|
+ \end{column}
|
|
|
+ \end{columns}
|
|
|
+\end{frame}
|
|
|
+
|
|
|
+
|
|
|
+\begin{frame}{And finally, what about $\Delta z$ for second hits?}
|
|
|
+ \begin{columns}
|
|
|
+ \begin{column}{0.4\textwidth}
|
|
|
+ \begin{itemize}
|
|
|
+ \item TODO: Remark about current window size ($\pm 900 \mu$m)
|
|
|
+ \item TODO: Remark about $\Delta z_2^{\textrm{sim}}$ resolution vs $\Delta z_1^{\textrm{sim}}$.
|
|
|
+ \end{itemize}
|
|
|
+ \end{column}
|
|
|
+ \begin{column}{0.6\textwidth}
|
|
|
+ \begin{figure}
|
|
|
+ \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_z2_B2.png}
|
|
|
+ \end{figure}
|
|
|
+ \end{column}
|
|
|
+ \end{columns}
|
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}{Outlook}
|
|
|
\begin{itemize}
|
|
|
- \item Investigate spikes in $\Delta \phi_{1}$/$\Delta z_{1}$ distributions
|
|
|
- \item Add cross-references between SC info and matched seeds/hits to ntuple
|
|
|
+ \item TODO: Plans that demonstrate VISION!
|
|
|
\item Suggestions from experts?
|
|
|
\end{itemize}
|
|
|
\end{frame}
|
|
|
|
|
|
+\begin{frame}
|
|
|
+ \centering
|
|
|
+ {\Huge BACKUP }
|
|
|
+\end{frame}
|
|
|
+
|
|
|
+\begin{frame}{Gsf Electron Seeding I}
|
|
|
+ \begin{columns}
|
|
|
+ \begin{column}{0.75\textwidth}
|
|
|
+ \begin{figure}
|
|
|
+ \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding1.png}
|
|
|
+ \end{figure}
|
|
|
+ \end{column}
|
|
|
+ \begin{column}{0.25\textwidth}
|
|
|
+ \begin{figure}
|
|
|
+ \hspace{-1in}
|
|
|
+ \vspace{-1in}
|
|
|
+ \includegraphics[width=1.8\textwidth]{diagrams/window1.png}
|
|
|
+ \end{figure}
|
|
|
+ \end{column}
|
|
|
+ \end{columns}
|
|
|
+ \vfill
|
|
|
+ \footnotesize{Windows from \url{https://indico.cern.ch/event/611042/contributions/2464057/attachments/1406271/2148742/ElectronTracking30112016.pdf}}
|
|
|
+\end{frame}
|
|
|
+
|
|
|
+\begin{frame}{Gsf Electron Seeding II}
|
|
|
+ \begin{columns}
|
|
|
+ \begin{column}{0.66\textwidth}
|
|
|
+ \begin{figure}
|
|
|
+ \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding2.png}
|
|
|
+ \end{figure}
|
|
|
+ \end{column}
|
|
|
+ \begin{column}{0.33\textwidth}
|
|
|
+ \begin{figure}
|
|
|
+ \hspace{-0.75in}
|
|
|
+ \vspace{1in}
|
|
|
+ \includegraphics[width=1.5\textwidth]{diagrams/window2.png}
|
|
|
+ \end{figure}
|
|
|
+ \end{column}
|
|
|
+ \end{columns}
|
|
|
+\end{frame}
|
|
|
+
|
|
|
+\begin{frame}{Gsf Electron Seeding III}
|
|
|
+ \begin{center}
|
|
|
+ \begin{figure}
|
|
|
+ \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding3.png}
|
|
|
+ \end{figure}
|
|
|
+ \end{center}
|
|
|
+\end{frame}
|
|
|
+
|
|
|
\end{document}
|