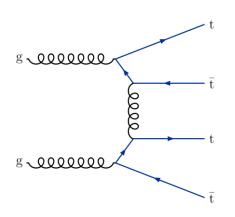
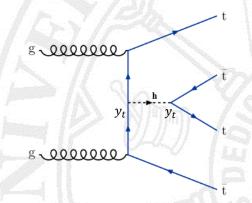
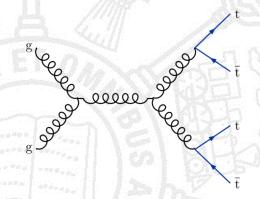
Search for Standard Model Production of Four Top Quarks

Caleb Fangmeier on behalf of the CMS Collaboration

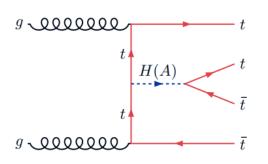
DPF 2019

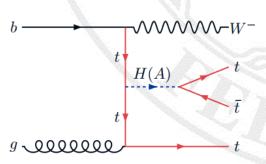


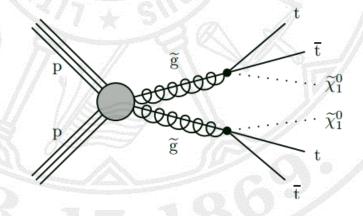



Why $t\overline{t}t\overline{t}$

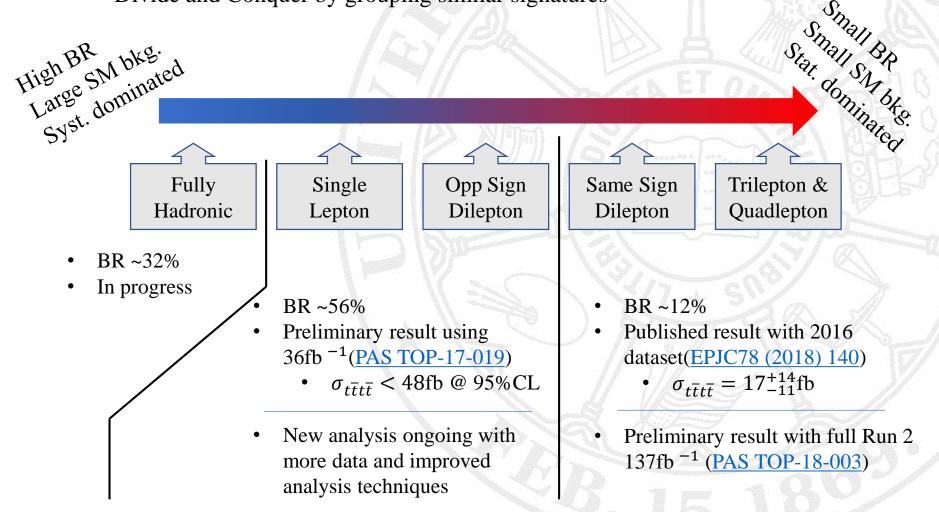
• Rare SM process on the edge of observation


$$\sigma (pp \to t\bar{t}t\bar{t}) = 12 \text{fb} \pm 20\% \text{ @ NLO (} \underline{1711.02116})$$





- Four top production is sensitive to interesting BSM models
 - Two Higgs Doublet Models (2HDM)
 - Simplified Dark Matter Theories
 - Effective Field Theory



Many Final States

- Signature defined by decay modes of the four W bosons
- Divide and Conquer by grouping similar signatures

Many Final States

• Signature defined by decay paths of the four W bosons

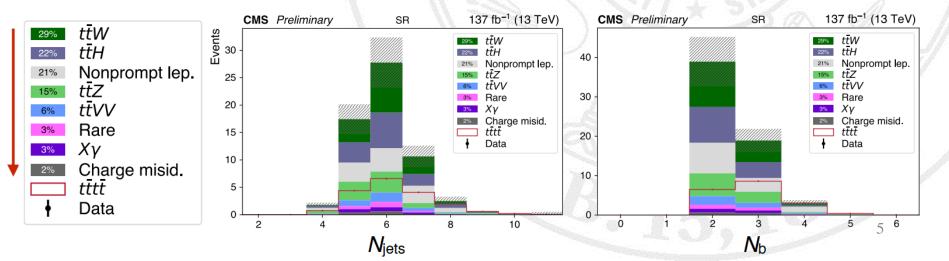
New analysis ongoing with

more data and improved

analysis techniques

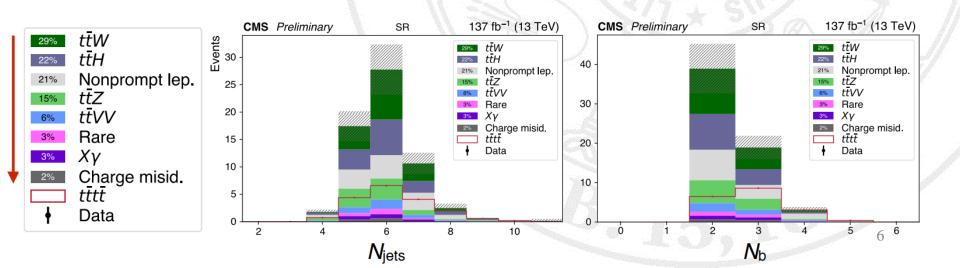
Divide and Conquer by grouping similar signatures

High BR Wokg.
Large SM bkg.
Syst. dominated **Fully** Single Opp Sign Hadronic Lepton Dilepton BR ~32% In progress BR ~56% Preliminary result using $36 \text{fb}^{-1} (PAS TOP-17-019)$ $\sigma_{t\bar{t}t\bar{t}} < 48$ fb @ 95%CL

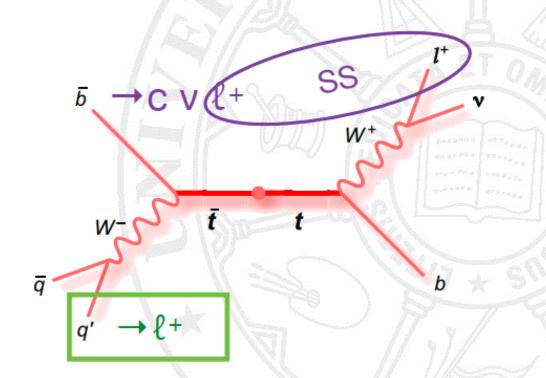

Same Sign
Dilepton

Trilepton & Quadlepton

- BR ~12%
- Published result with 2016 dataset(EPJC78 (2018) 140)
 - $\sigma_{t\overline{t}t\overline{t}} = 17^{+14}_{-11} \text{fb}$
- Preliminary result with full Run 2
 137fb ⁻¹ (PAS TOP-18-003)

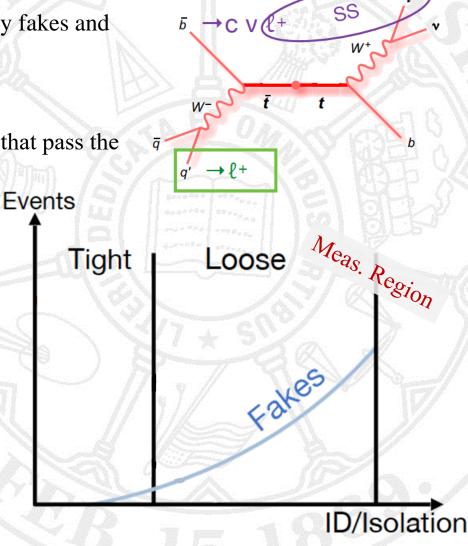

Baseline Event Selection

- Same-sign lepton pair, or ≥ 3 leptons | $p_T > 25/20/20$ GeV
- \geq 2 jets | $p_T > 40 \text{GeV}$
- \geq 2 b-tagged jets | $p_T > 25$ GeV
 - Neural Net based tagger (~70% tag eff., 1% mis. tag)
- $H_T > 300 \text{ GeV}$
- $\cancel{E}_T > 50 \text{ GeV}$
- Z-boson veto
 - $|m_Z m_{ll}| < 15$ GeV for opposite sign, same flavor pair
 - If leptons pass tight ID, promote to separate $t\bar{t}Z$ control region, otherwise discard



Backgrounds

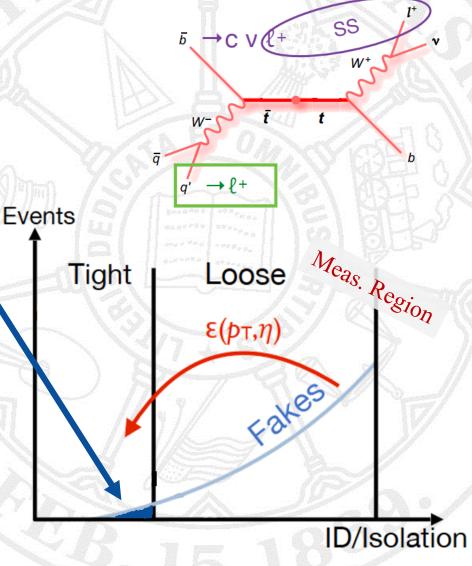
- Two types of backgrounds survive the Baseline Selection.
 - Processes which produce "fake" same-sign lepton pairs
 - Nonprompt leptons
 - Charge misidentified leptons
 - Processes with **genuine** prompt same-sign leptons
 - $t\overline{t}W, t\overline{t}Z$
 - Simulation normalized to data with dedicated control regions
 - $t\bar{t}H$, $t\bar{t}VV$, $X + \gamma$, Rare
 - Taken directly from simulation


• $t\bar{t}$ (for example) events can enter signal region through **nonprompt leptons**

- Not well described in simulation so estimate from data!
- This is the "tight-to-loose" ratio method.

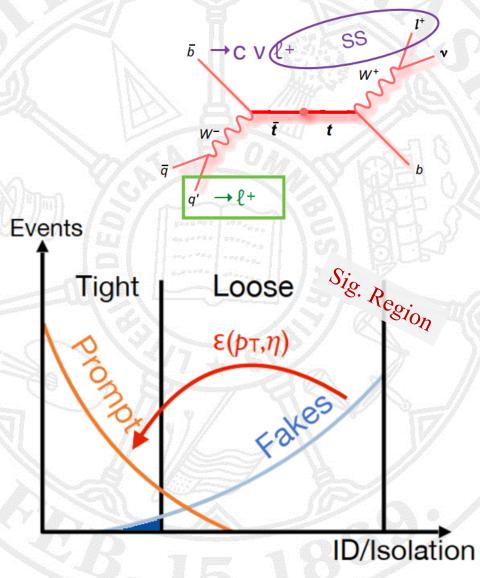
- Define a measurement region that has many fakes and few prompt leptons
 - Single Lepton Selection
 - $E_T < 20 \text{GeV}, M_T < 20 \text{ GeV}$
- Measure the proportion of "loose" leptons that pass the "tight" selection
- Do this differentially in flavor, p_T , and η

$$P(tight|loose) = \frac{\#tight}{\#loose}$$



$$P(tight|loose) = \frac{\#tight}{\#loose}$$

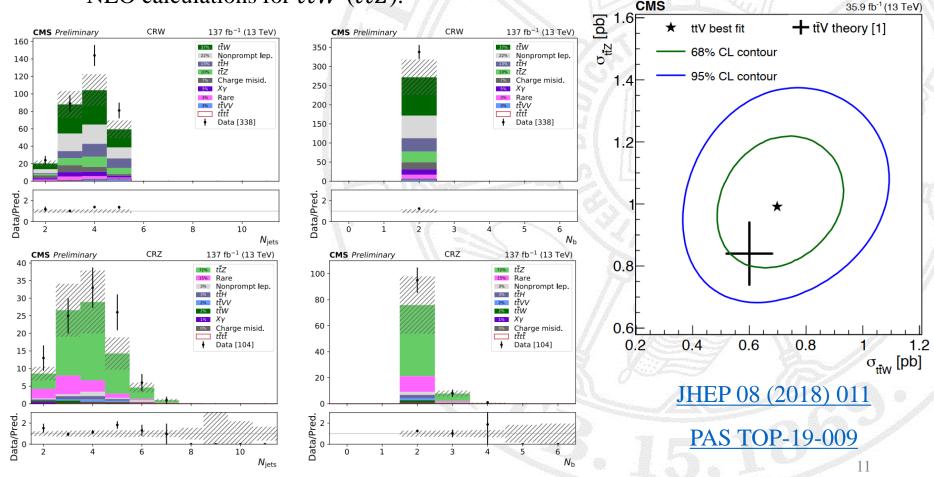
 Next, calculate a transfer factor that weights loose events to give the count of "fake" tight events.


$$\varepsilon(f, p_T, \eta) = \frac{P}{1 - P}$$

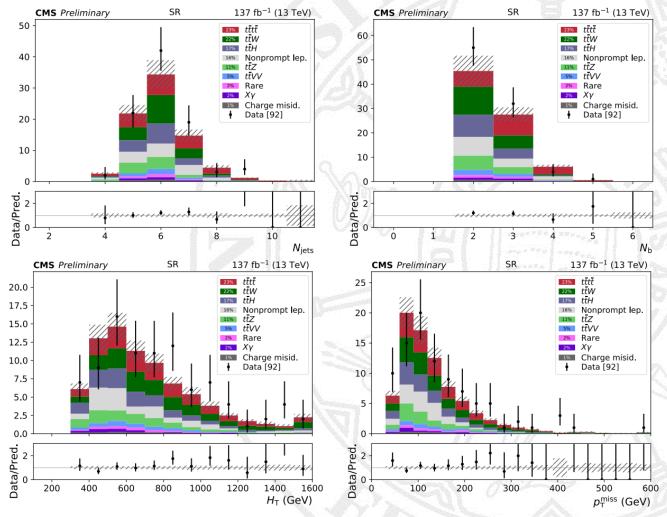
$$#tight = \sum_{l!t \text{ leps}} \varepsilon(f_i, p_{T_i}, \eta_i)$$

- Finally, in the signal region, the number of "fakes" that pass the tight selection can be estimated.
- For dilepton events, the sum is over events with 1 tight lepton and one loosenot-tight lepton.
- ~17% background contribution.

$$\#fakes = \sum_{\text{l!t leps}} \varepsilon(f_i, p_{T_i}, \eta_i)$$



Backgrounds: $t\bar{t}W$, $t\bar{t}Z$

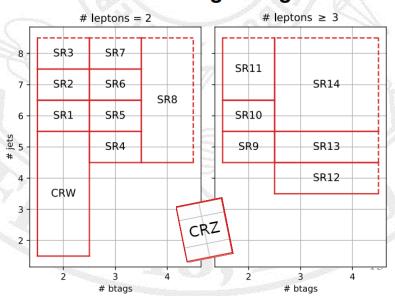

• Regions CRW and CRZ show 20-30% scale factor for $t\bar{t}W$, and $t\bar{t}Z$.

• Consistent with dedicated 2016 measurements being 20% (25%) higher than

NLO calculations for $t\overline{t}W$ ($t\overline{t}Z$).

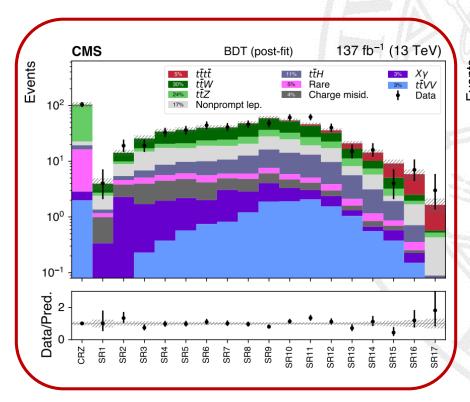
Signal Region Kinematics

• Pre-fit signal region kinematic distributions show good agreement when including signal.

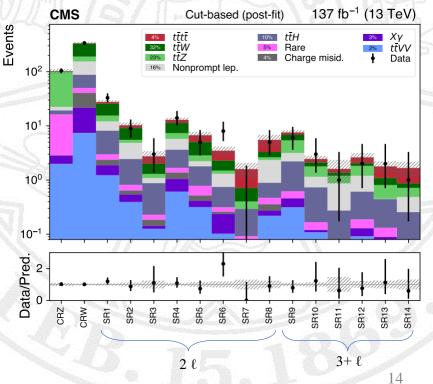

Signal Extraction

- A 19-variable xgboost BDT is trained with kinematic information to separate signal from background
 - N_{jet} , N_b , N_{lep} , H_T , Jet p_T , Lepton p_T , $\Delta \varphi$, $\Delta \eta$, ...
- Along with a separate control region for $t\bar{t}Z$ ("CRZ"), 17 bins of the BDT discriminant are used in a maximum likelihood fit
- Cut based approach used as a cross check
 - 16 bins based on N_{jet} , N_b , and N_{lep}
 - In addition to CRZ, include a control region for $t\bar{t}W$ ("CRW")

BDT signal regions

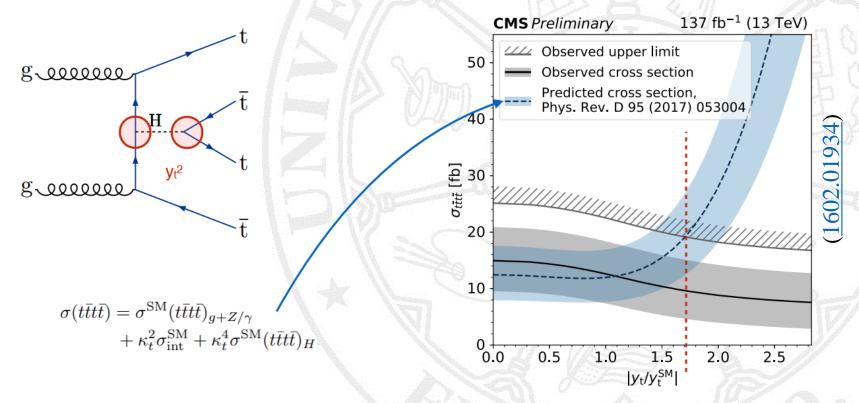


Cut-based signal regions



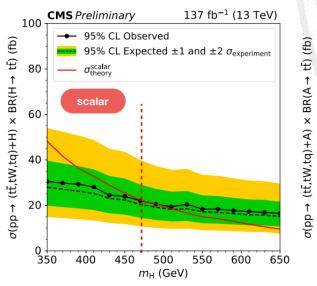
Results

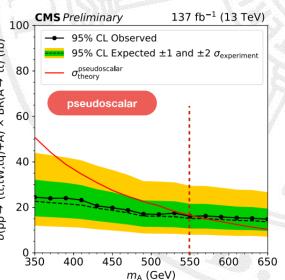
- Full Run 2 BDT analysis $(137fb^{-1})$
 - 2.6 σ obs. (2.7 σ exp.) $\rightarrow \sigma_{t\bar{t}t\bar{t}} = 12.6^{+5.8}_{-5.2}$ fb

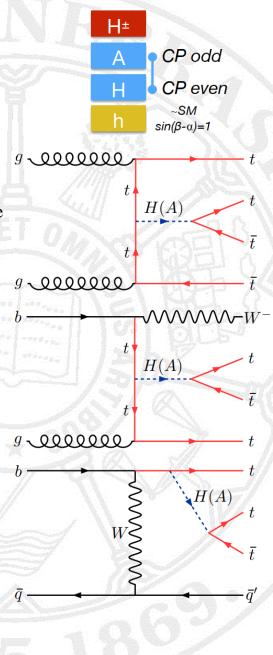


- Consistent with cut-based cross-check
 - 1.7 σ obs. (2.5 σ exp.) $\rightarrow \sigma_{t\bar{t}t\bar{t}} = 9.4^{+6.2}_{-5.6}$ fb

Interpretations: Top Yukawa


- Higgs-mediated contribution grows with y_t .
- Sloped $\sigma_{t\bar{t}t\bar{t}}$ from growing $t\bar{t}H$ background ($\propto y_t^2$)




 $|y_t/y_t^{SM}| < 1.7 @ 95\% CL$

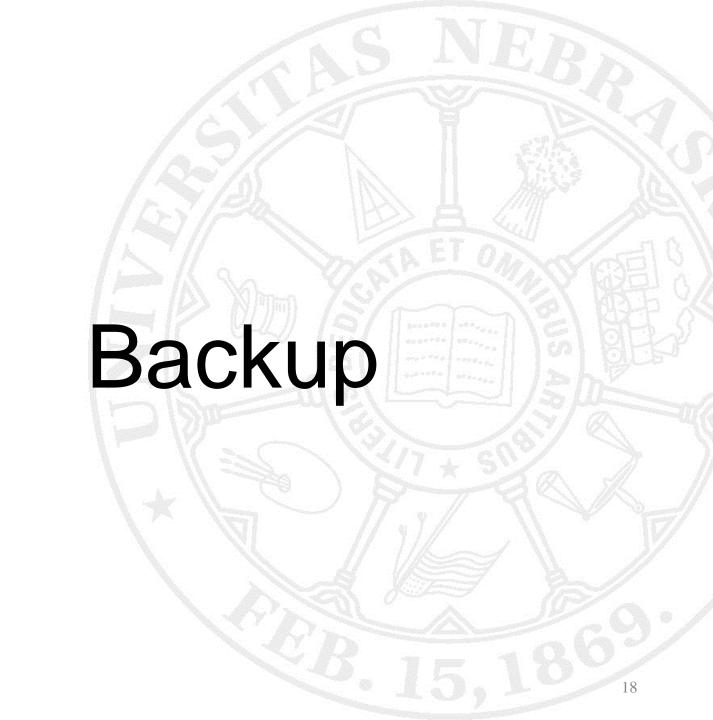
Interpretations: 2HDM

- General 2HDM predict an additional Higgs doublet → four new particles
 - Type-II, $\tan \beta = 1$ prefer decays of H/A $\rightarrow t\bar{t}$
 - $\sin \beta \alpha = 1$, "alignment condition", makes light CP-even higgs h SM-like
- Probe **associated production** modes giving 3 and 4 top final states
 - Consider H and A separately, decoupling other particles
- Exclude heavy $(m > 2m_t)$ scalar (pseudoscalar) bosons up to ~470 (550) GeV

16

Summary

All results at: http://cern.ch/go/pNj7

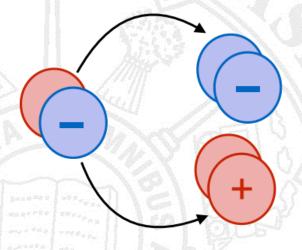

• Latest CMS measurement of $t\bar{t}t\bar{t}$ cross-section with 2L SS and \geq 3L final state

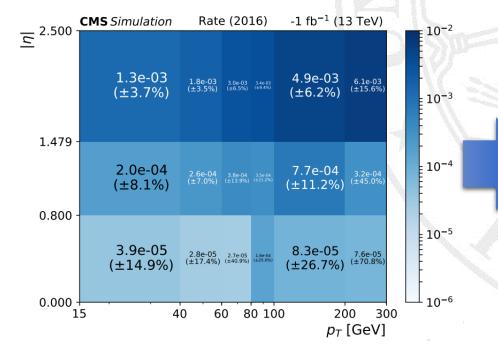
 $\sigma_{t\bar{t}t\bar{t}} = 12.6^{+5.8}_{-5.2} \text{fb} (2.6\sigma \text{ obs.})$ **CMS** Preliminary March 2019 <mark>ල්</mark> 10³ ූ 7 TeV CMS measurement (L ≤ 5.0 fb⁻¹) TeV CMS measurement (L ≤ 19.6 fb⁻¹) TeV CMS measurement (L ≤ 137 fb⁻¹) Production Cross Section, Theory prediction CMS 95%CL limits at 7, 8 and 13 TeV 10^{-3}

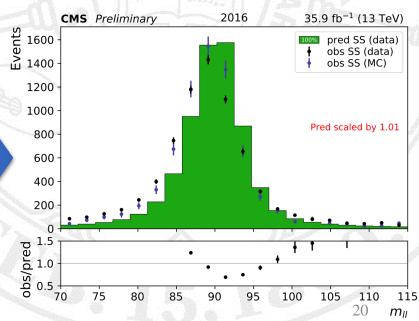
• Rich Phenomenology – Can constrain Top Yukawa coupling, exotic mediators, ...

tW

• Exciting prospects for Run 2/3 – Larger dataset, all final states


Systematic Uncertainties


Source	Uncertainty (%)	Impact on $\sigma(t\bar{t}t\bar{t})$ (%)
Integrated luminosity	2.3–2.5	3
Pileup	0–5	1
Trigger efficiency	2–7	2
Lepton selection	2–10	2 2
Jet energy scale	1–15	190
Jet energy resolution	1-10	6
b tagging	1–15	065
Size of simulated sample	1–25	<1
Scale and PDF variations †	10–15	2
ISR/FSR (signal) †	5–15	Ø\ 2
ttH (normalization) †	25	5
Rare, $X\gamma$, $t\bar{t}VV$ (norm.) †	11–20	<1
tīZ, tīW (norm.) †	40	3-4
Charge misidentification †	20	<1
Nonprompt leptons †	30–60	3
N _{jets} ISR/FSR	1–30	2
$\sigma'(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$ †	35	11


†Correlated across years

Backgrounds: Charge misid.

- Charge mismeasurement in dilepton OS events fakes a SS event.
 - Measure flip probability in simulated SR events
 - Verify normalization closure in Z-dominated CR
 - Reweight OS ee events to predict SS region contribution

Interpretations: Higgs Oblique Parameter

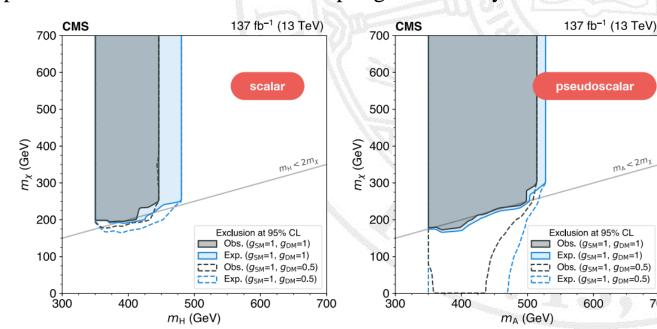
"...The Higgs boson oblique parameter \widehat{H} [is] the hallmark of off-shell Higgs physics. \widehat{H} is defined as the Wilson coefficient of the sole dimension-6 operator that modifies the Higgs boson propagator, within a Universal EFT"

(1903.07725)

$$\delta \sigma_{t\bar{t}t\bar{t}} \equiv \frac{\sigma_{\hat{H}} - \sigma_{\rm SM}}{\sigma_{\rm SM}} \approx 0.03 \left(\frac{\hat{H}}{0.04}\right) + 0.15 \left(\frac{\hat{H}}{0.04}\right)^2$$

- We generate $t\overline{t}t\overline{t}$ with different values of \widehat{H} to account for changes in acceptance
- Scale $t\overline{t}H$ cross section by $(1-\widehat{H})^2$ to account for its \widehat{H} dependency.
- Combining this with the BDT analysis results yields a limit of

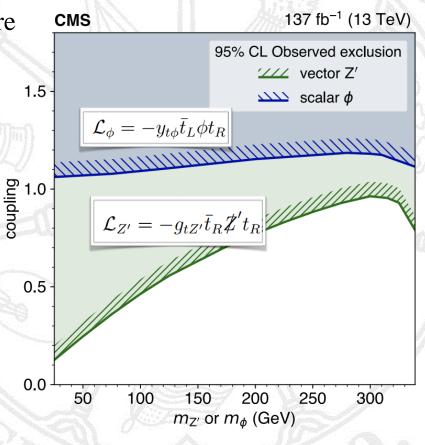
$$\widehat{H} < 0.16 @ 95\% CL$$


Interpretations: Dark Matter

- $t\overline{t} + DM(\underline{1807.06522})$ and $t + DM(\underline{1901.01553})$ can potentially give rise to multi-top final states
 - Complements traditional MET-based searches with $t\bar{t}t\bar{t}$ above (and slightly past) the $m_{\rm mediator} = 2m_{DM}$ diagonal.
- Parameters
 - Mediator mass (scalar ϕ or pseudoscalar A)
 - DM particle χ mass
 - DM-mediator coupling, fermion-mediator coupling
- Simplified model assumes the two couplings to be unity

$$\mathcal{L}_{\Phi} \supset g_{\chi} \Phi \bar{\chi} \chi + \frac{g_v \Phi}{\sqrt{2}} \sum_f (y_f \bar{f} f)$$


700


$$\mathcal{L}_A \supset i g_{\chi} A \bar{\chi} \gamma^5 \chi + \frac{i g_v A}{\sqrt{2}} \sum_f (y_f \bar{f} \gamma^5 f)$$

Interpretations: Off-Shell Mediators

- New neutral particles with $m < 2m_t$?
- Consider scalar ϕ and vector Z' that are top-philic (1611.05032)
 - Constrain couplings above 1.1 (0.1-0.9) for scalar (vector) mediators

