Ph237 - Gravitational Waves

Week 1: Overview

Kip S. Thorne, Caltech, 7 & 9 January 2001

Via video feed from Cambridge England

Physical Nature of Gravitational Waves - 1

- Waves push freely floating objects apart and together
- $\Delta L / L = h(t)$
- Local inertial frames do not mesh
- surface Like non-meshing of Cartesian coordinates on Earth's
- Earth's curvature causes non-meshing
- Spacetime curvature causes inertial-frame non-meshing

Gravitational waves are ripples of spacetime curvature

Physical Nature of Gravitational Waves - 2 Great richness to a wave's spacetime curvature:

- Heuristically:
- Stretch and squeeze of space
- $\Delta L / L = h(t)$
- Slowing and speeding of rate of flow of time
- Measure stretch and squeeze with light beams
- same as mirror separation, so no effect is seen? Does light wavelength get stretched and squeezed the
- NO! Spacetime curvature influences light differently from mirror separations
- Mathematically:
- Curvature described by rank-4 Riemann tensor, $R_{\alpha\beta\gamma\delta}$

Physical Nature of Gravitational Waves - 3

Stretch and squeeze are:

- $\Delta L / L = h$
- transverse to direction of propagation
- Equal and opposite along orthogonal axes (trace-free)
- Force pattern invariant under 180° rotation
- Contrast with EM waves: invariant under 360° rot'n

T

- (Spin of quantum) = (360 degrees) / (invariance angle) = 1 for photon, 2 for graviton
- Irreducible representation of Little Subgroup of Lorentz grp
- Two polarizations: axes rotated 90° EM

Physical Nature of Gravitational Waves - 4

Each polarization has its own gravitational-wave field

These fields' evolutions $h_+(t) & h_X(t)$ are the *waveforms* Waveforms

Propagation of Gravitational Waves

- High-frequency waves (wavelength $\lambda \ll$ radius of curvature *R* of background spacetime; geometric optics): propagate at light speed
- => graviton has rest mass zero (like photon)
- Redshifted and grav'ly lensed, like light
- If $\lambda \sim R$, scattered by spacetime curvature
- Absorption by matter in our universe:
- Negligible ... even back to big bang
- Dispersion due to interaction with matter:
- Negligible
- Example: Universe filled with neutron stars or black holes:
- In propagating around the universe once:
- Dispersion delays the GW by about one wavelength λ

The Gravitational Wave Spectrum

- Spectrum of known and expected sources extends over 22 decades of frequency
- Promising sensitivities are being achieved in four

Some Sources in our Four Bands:

Anisotropy	CMB	ELF		
Timing	Pulsar	VLF		
LISA	Doppler	LF		
HF LIGO				

The Big Bang Singularity in which the Universe was born, Inflation of Universe

cosmic strings, domain walls, mesoscopic excitations, ...? Exotic Physics in Very Early Universe: Phase transitions,

Naked singularities?	Soliton stars?	Binary stars	suns),	Massive BH's (300 to 30 million
Naked singularities?	Boson stars ?	Supernovae	Neutron stars	Small BH's (2 to 1000 suns),

Caltech Faculty Involved in GW Research

- LIGO (high frequencies, ~ 10 Hz to ~ 1000 Hz): Barish, Drever, Libbrecht, Weinstein, Kip
- LISA (low frequencies, $\sim 10^{-4}$ Hz to ~ 0.1 Hz):
- Prince, Phinney, Kip. + heavy JPL involvement
- Doppler tracking (very low frequencies)
- Kulkarni
- Cosmic microwave polarization anisotropy
- Kamionkowski, Lange, Readhead
- CaJAGWR: Caltech/JPL Association for Gravitational Wave **Research**
- Seminars ~ every other Friday [alternate with LIGO seminars]
- http://www.cco.caltech.edu/~cajagwr/
- Links to LIGO, LISA, and other GW sites

Multipolar Decomposition of Waves

- Theorem in canonical field theory:
- (Waves' multipole order) \ge (spin of quantum) = 2 for graviton

Strengths of Waves

- Source: mass M, size L, oscillatory period P,
- quadrupole moment $M_2 \sim M L^2$
- Quadrupole moment approximation:
- $h \sim (G/c^4)(\dot{M}_2/r) \sim (G/c^4)(M L^2/P^2) /r$ $\sim (G/c^4)(internal kinetic energy) / r$
- ~ $(1/c^{2})$ (Newton potential of [mass-equivalent] kinetic energy)
- energy) $\sim (1/c^2)$ (Newton potential of [mass-equivalent] potential
- Higher multipoles: down by (v/c) to some power
- Magnitude:
- Colliding BH's or NS's @ $r \sim 100$ Mpc $\sim 3 \times 10^8$ ltyr $\sim 3 \times 10^{27}$ cm
- [Mass-equivalent] Kinetic energy $\sim M_{sun}$
- $h \sim few \ge 10^{-22}$

Now in Operation [~1000 Hz] **International Network of Bar Detectors**

12

How a LIGO Interferometer Works

Collaboration of ~350 scientists at ~30 institutions

- First searches for GW's: 2002 to 2006 -- sensitivity where plausible to see waves
- Upgrade to advanced interferometers: ~2007; 3000 higher event rate
- new search: 2008 ... -- sensitivity where should see rich waves from wide variety of sources

LIGO Organization

LIGO Laboratory

- **Responsible for Facilities; and for Design, Construction, & Operation of** Interferometers
- Caltech & MIT; Director: Barry Barish [Caltech]

LIGO Scientific Community (LSC)

- Formulates science goals
- Carries out Interferometer R&D
- ~350 scientists and engineers in ~25 institutions
- Caltech, California State University, Carleton, Cornell, FermiLab, Southern U., Stanford, Syracuse, U. Texas-Brownsville, U. Wisconsin-Milwaukee, ACIGA (Australia), GEO600 (Britain & France), IUCAA (India), NAOJ-TAMA (Japan), Moscow State U. & IAP-Nizhny Novgorod (Russia) Louisiana Tech, MIT, U. Michigan, U. Oregon, Penn State, U. Florida, Harvard, Iowa State, JILA (U. Colorado), LSU,
- Spokesman: Rai Weiss [MIT]

International Network of Interferometric Detectors

- Network
 Required for:
- Detection
- Waveform
- Waveform Extraction
- Direction by Triangulation

TAMA300, Tokyo [Japan]

VIRGO: Pisa, Italy [Italy/France]

GEO600, Hanover Germany [UK, Germany]

AIGO, Jin-Jin West Australia

LIGO: Initial Interferometers

Seismic Isolation

Test-Mass Mirror and its Suspension

Mirror Installation and Alignment

Protection from Elements

Advanced IFOs: The Technical Challenge

- In advanced interferometers:
- Monitor motions of 40 kg saphire mirrors to:
- $\sim 10^{-17}$ cm $\sim 1/10,000$ diameter of atomic nucleus
- $\sim 10^{-13}$ of the wavelength of light
- ~ the half width of the mirror's quantum wave function
- Quantum Nondemolition
 (QND) Technology
- Branch of quantum information science

- telescopes 1 Watt laser, 30cm diameter
- \sim 1 million wavelengths / sec **Relative motions of spacecraft:**
- other (heterodyne detection); Light beams beat against each
- beat signal fourier analyzed

- **Joint American/European**
- **US: Managed at GSFC (Md)**
- **Payload & Science:** JPL/Caltech
- **Tom Prince: Mission Scientist**
- Launch: 2011

LISA: The Technical Challenge

- Monitor the relative motion of the satellites' "proof masses", 5 million kilometers apart, to a precision $- \sim 10^{-9}$ cm [in frequency band f $\sim 0.1 - 10^{-4}$ Hz]
- $\sim 10^{-5}$ of the wavelength of light
- accelerations $\sim 10^{-16}$ g
- Guarantee that the only forces acting on the proof masses at this level are gravitational, from outside the

spacecraft

Gravitational-Wave Data Analysis

- Matched filtering: Waveform in Noisy data waveform Ineoretical
- If waveforms slip by ~ 1 radian, it is obvious in cross correlation
- LIGO: up to ~20,000 cycles (~100,000 radians)
- LISA: up to $\sim 200,000$ cycles (~ 1 million radians)
- Theoretical challenge: compute waveforms to this accuracy
- If waveforms poorly known:
- Must use other analysis methods: significant loss of signal strength!
- e.g. Flanagan's excess power method: filter h(t) then square & integrate

Scientific Goals of LIGO and LISA

- **Astronomy: Open up a Radically New Window Onto** the Universe
- **Physics:** Convert the study of highly curved spacetime
- From a purely theoretical enterprise (exploring general relativity theory)
- To a joint observational/theoretical enterprise
- **Examples:** Sources organized by science we expect to extract, not by when they might be detected --

The Inspiral of a White Dwarf (WD), Neutron Star (NS), or Small Black Hole (BH) into a Supermassive BH

- Astrophysical phenomenology:
- Occurs in nuclei of galaxies
- Provides a probe of the environments
 of supermassive holes
- Rates: a few per year; perhaps far more
- Frequency band and detectors:
- Low frequencies; LISA
- Information carried by the waves:
- High-precision map of the spacetime curvature of the supermassive BH
- Science to be done:
- Map black holes, test "no hair theorem", test theory of evolution of black-hole horizons when gravitationally perturbed, observe extraction of spin energy from black holes
- Method of computing waveforms:
- Black-hole pertubation theory; radiation-reaction theory

Why might signal processing be non-optimal? **Inspiral Waves:**

Typical Orbit in last year:

- days ?? Less? ?? Coherent matched filtering no longer than a few Extreme sensitivity of orbit to initial conditions =>
- stochastic background; hard to separate strongest Many distant inspirals may give troublesome inspirals
- quantify loss of S/N To explore & quantify this: need waveforms. Will take ~ 2 years of concerted effort to produce them &
- Corresponding Waveform [schematic]:

Binary Black Hole Mergers [cont.]

Merger

Ringdown

- Astrophysical phenomenology:
- stellar-mass holes: in bodies of galaxies (`field'), in globular & other clusters.
- Supermassive holes: as result of merger of galaxies \mathbb{A}
- Frequency band and detectors:
- Stellar-mass: High frequencies; LIGO & partners

~1000 cycles ~1 min

simulations |

- Supermassive: Low frequencies; LISA
- **Rates, Signal to noise ratios:**
- LIGO, initial interferometers: seen to 100 Mpc, $\sim 1/200$ yr to $\sim 1/yr$; $S/N \sim 10$ or less
- LIGO, advanced interferometers: seen to $z\sim0.4$, $\sim2/mo$ to $\sim15/day$; $S/N \sim 10$ to 100
- LISA: seen to z~10s (earliest objects in universe), ~few/yr; $S/N \sim 100$ to 100,000

Binary Black Hole Mergers | cont. |

- Information carried by the waves:
- Inspiral: Masses, spins, surface areas, and orbits of initial holes
- Merger: The highly nonlinear dynamics of curved spacetime
- of final hole Ringdown: Mass, spin, surface area, ...

~1000 cycles ~1 min -knownsupercomputer simulations Merger Ringdown -knowntime

- Science to be done:
- Test Penrose's cosmic censorship conjecture
- Test Hawking's second law of black hole mechanics (horizon area increase)
- Watch a newborn black hole pulsate, radiating away its excess "hair"
- Probe the nonlinear dynamics of spacetime curvature under the most extreme of circumstances that occurs in the modern universe
- Probe demography of black hole binaries

Methods of computing waveforms:

Inspiral: post-Newtonian expansion; merger: numerical relativity; ringdown: black-hole perturbation theory

Neutron-Star / Black-Hole Mergers

- Astrophysical phenomenology:
- Stellar-mass objects: in field,
 in globular & other clusters.
- Frequency band and detectors:
- High frequencies: LIGO and partners
- Rates:
- Initial IFOs: 43Mpc, 1/2500yrs to 1/2yrs
- Advanced IFOs: 650Mpc, 1/yr to 4/day
- Information carried by waves:
- Inspiral: masses, spins, orbit
- Tidal disruption of NS: neutron-star structure (e.g. radius)
- Science to be done:
- Probe neutron-star structure, equation of state of matter
- Methods of analysis:
- Inspiral: post-Newtonian; disruption of NS: numerical relativity

Neutron-Star / Neutron-Star Inspiral

- Astrophysical phenomenology:
- Main-sequence progenitors in field, capture binaries in globular clusters
- Frequency band and detectors:
- High frequencies: LIGO and partners
- Rates:
- Initial IFOs: 20Mpc, 1/3000yrs to 1/3yrs
- Advanced IFOs: 300Mpc, 1/yr to 3/day
- Information carried by waves:
- Inspiral: masses, spins, orbit
- Merger: probably lost in LIGO's high-frequency noise
- Science to be done:
- Test relativistic effects in inspiral [also for NS/BH and BH/BH]
- Methods of analysis:
- Post-Newtonian expansions

Astrophysical phenomenology: Spinning Neutron Stars: Pulsars

- **Information carried by waves: Detectability: Frequency band and detectors** NS structure - High frequencies: LIGO and partners Governed by ellipticity, spin Pulsars in our galaxy Ellipticities thought to be $\varepsilon \leq 10^{-6}$; possibly 10^{-5} 10⁻²³¹ 10⁻²⁴1 ç 10kpc
- **Methods of analysis:**

Behavior in quakes

10

20

50 О

100 200

500 1000

frequency, Hz

Slow-motion, strong-gravity

Low-Mass X-Ray Binaries in Our Galaxy [LIGO] **Spinning Neutron Stars:**

Combined GW & EM obs's => information about: revolutions / sec **Rotation rates** ~250 to 700 luminosity \sim GW strength torque If so, and steady state: X-ray – Why not faster? crust strength & structure. balanced by GW emission Bildsten: Spin-up torque₁₀-22 temperature dependence 0-24 viscosity, ... 10⁻²³1 10 20 50 20 days of integration Signal strengths for 100 200 Sco X-500 1000

frequency, Hz

R-Mode Sloshing in First ~1yr of Life [LIGO] Neutron-Star Births:

- NS formed in supernova or accretion-induced collapse of a white dwarf.
- If NS born with P_{spin} < 10 msec:
 R-Mode instability:
- Gravitational radiation reaction drives sloshing
- what amplitude? Physics complexities: What stops the growth of sloshing & at
- Crust formation in presence of sloshing.
- Coupling of R-modes to other modes?
- Wave breaking & shock formation?
- Magnetic-field torques?

Depending on this,GW's may be detectable out to Virgo (supernova rate several per year). BUT recent research pessimistic

GW's carry information about these

COMPACT BINARIES IN OUR GALAXY: LISA

- **Census of short-period compact binaries in our Galaxy; rich astro**
- **BH/BH studies: e.g. merger rate; compare with LIGO**
- NS/NS studies -- e.g. merger rate; compare with LIGO et al
- **3000 WD/WD binaries will stick up above the WD/WD noise**
- Inspiral (& M_{chirp}) will be measured if f > 0.003 Hz

The First One Second of Universe's Life

Waves from Planck Era, Amplified by Inflation

- **Cosmological phenomenology:**
- Vacuum fluctuations (at least) created in Planck era
- Amplified by interaction with background spacetime curvature of universe during inflation
- Frequency band and detector 10-5
- All bands, all detectors
- **Strength predictions:**
- "Standard Inflation": detect Ω only in ELF band (CMB)
- "Pre-big-bang", etc: more o
- Information carried:
- Physics of big bang, inflation; equation of state of very early universe
- **Methods of analysis:**
- Cosmological perturbation theory; quantum gravity

Phase Transitions in Very Early Universe

- Cosmological Phenomenology:
- GW's redshifted with expansion phase transition at each decoupling produced gravitational waves; As universe expanded, fundamental forces decoupled from each other;

Frequency bands and detectors:

- LISA probes Electroweak Phase Transition (~100 GeV) at universe age $\sim 10^{-12}$ sec
- LIGO probes any phase transition that might have occurred at $\sim 10^9$ GeV and age $\sim 10^{-25}$ sec

Science:

Probe high-energy physics, e.g. strength of electroweak phase produced by phase transition transition; probe topological defects & evolution of inhomogeneities

Mesoscopic Oscillations in Very Early Universe

- dimensional defect (*brane*) in a higher dimensional universe **Recent** *speculations* about our observed universe as a 3-
- All fundamental forces except gravity are confined to the brane
- Gravity is confined to some distance b< 1 mm from the</p> brane. brane, in the higher dimensions, and feels the shape of the
- **Excitations of our brane:** [Craig Hogan]
- Brane forms wrinkled on all scales up to b. Wrinkles evolve dynamically, producing GW's, with energy densities ~ those in other forms of radiation.
- GW's from excitation scales ~ 10 A to 1 mm get redshifted to LISA band with GW strengths easily detected by LISA.
- GW's from scales ~ 10^{-10} to 10^{-13} mm redshifted to LIGO band.