123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- '''
- histogram_utils.py
- The functions in this module use a representation of a histogram that is a
- tuple containing an arr of N bin values, an array of N bin errors(symmetric)
- and an array of N+1 bin edges(N lower edges + 1 upper edge).
- For 2d histograms, It is similar, but the arrays are two dimensional and
- there are separate arrays for x-edges and y-edges.
- '''
- import numpy as np
- from scipy.optimize import curve_fit
- def hist(th1):
- nbins = th1.GetNbinsX()
- edges = np.zeros(nbins+1, np.float32)
- values = np.zeros(nbins, np.float32)
- errors = np.zeros(nbins, np.float32)
- for i in range(nbins):
- edges[i] = th1.GetXaxis().GetBinLowEdge(i+1)
- values[i] = th1.GetBinContent(i+1)
- errors[i] = th1.GetBinError(i+1)
- edges[nbins] = th1.GetXaxis().GetBinUpEdge(nbins)
- return values, errors, edges
- def hist_bin_centers(h):
- _, _, edges = h
- return (edges[:-1] + edges[1:])/2.0
- def hist2d(th2, include_errors=False):
- """ Converts TH2 object to something amenable to
- plotting w/ matplotlab's pcolormesh.
- """
- import numpy as np
- nbins_x = th2.GetNbinsX()
- nbins_y = th2.GetNbinsY()
- xs = np.zeros((nbins_y+1, nbins_x+1), np.float32)
- ys = np.zeros((nbins_y+1, nbins_x+1), np.float32)
- values = np.zeros((nbins_y, nbins_x), np.float32)
- errors = np.zeros((nbins_y, nbins_x), np.float32)
- for i in range(nbins_x):
- for j in range(nbins_y):
- xs[j][i] = th2.GetXaxis().GetBinLowEdge(i+1)
- ys[j][i] = th2.GetYaxis().GetBinLowEdge(j+1)
- values[j][i] = th2.GetBinContent(i+1, j+1)
- errors[j][i] = th2.GetBinError(i+1, j+1)
- xs[nbins_y][i] = th2.GetXaxis().GetBinUpEdge(i+1)
- ys[nbins_y][i] = th2.GetYaxis().GetBinUpEdge(nbins_y+1)
- for j in range(nbins_y+1):
- xs[j][nbins_x] = th2.GetXaxis().GetBinUpEdge(nbins_x+1)
- ys[j][nbins_x] = th2.GetYaxis().GetBinUpEdge(j+1)
- return values, errors, xs, ys
- def hist_slice(hist, range_):
- values, errors, edges = hist
- lim_low, lim_high = range_
- slice_ = np.logical_and(edges[:-1] > lim_low, edges[1:] < lim_high)
- last = len(slice_) - np.argmax(slice_[::-1])
- return (values[slice_],
- errors[slice_],
- np.concatenate([edges[:-1][slice_], [edges[last]]]))
- def hist_normalize(h, norm):
- values, errors, edges = h
- scale = norm/np.sum(values)
- return values*scale, errors*scale, edges
- # def hist_slice2d(h, range_):
- # values, errors, xs, ys = h
- # last = len(slice_) - np.argmax(slice_[::-1])
- # (xlim_low, xlim_high), (ylim_low, ylim_high) = range_
- # slice_ = np.logical_and(xs[:-1, :-1] > xlim_low, xs[1:, 1:] < xlim_high,
- # ys[:-1, :-1] > ylim_low, ys[1:, 1:] < ylim_high)
- # last = len(slice_) - np.argmax(slice_[::-1])
- # return (values[slice_],
- # errors[slice_],
- # np.concatenate([edges[:-1][slice_], [edges[last]]]))
- def hist_fit(h, f, p0=None):
- values, errors, edges = h
- xs = hist_bin_centers(h)
- # popt, pcov = curve_fit(f, xs, values, p0=p0, sigma=errors)
- popt, pcov = curve_fit(f, xs, values, p0=p0)
- return popt, pcov
- def hist_rebin(hist, range_, nbins):
- raise NotImplementedError()
|