#!/usr/bin/env python3 import math import matplotlib as mpl # mpl.rc('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']}) # mpl.rc('font', **{'family': 'serif', 'serif': ['Palatino']}) mpl.rc('text', usetex=True) mpl.rc('figure', dpi=200) mpl.rc('savefig', dpi=200) def add_decorations(axes, luminosity, energy): cms_prelim = r'{\raggedright{}\textsf{\textbf{CMS}}\\ \emph{Preliminary}}' axes.text(0.01, 0.98, cms_prelim, horizontalalignment='left', verticalalignment='top', transform=axes.transAxes) lumi = "" energy_str = "" if luminosity is not None: lumi = r'${} \mathrm{{fb}}^{{-1}}$'.format(luminosity) if energy is not None: energy_str = r'({} TeV)'.format(energy) axes.text(1, 1, ' '.join([lumi, energy_str]), horizontalalignment='right', verticalalignment='bottom', transform=axes.transAxes) def to_bin_list(th1): bins = [] for i in range(th1.GetNbinsX()): bin_ = i+1 center = th1.GetBinCenter(bin_) width = th1.GetBinWidth(bin_) content = th1.GetBinContent(bin_) error = th1.GetBinError(bin_) bins.append((center-width/2, center+width/2, (content, error))) return bins def histogram(th1, include_errors=False): edges = [] values = [] bin_list = to_bin_list(th1) for (l_edge, _, val) in bin_list: edges.append(l_edge) values.append(val) edges.append(bin_list[-1][1]) return values, edges def histogram_slice(hist, range_): bins, edges = hist lim_low, lim_high = range_ bins_new = [] edges_new = [] for i, (bin_, low, high) in enumerate(zip(bins, edges, edges[1:])): if low >= lim_low and high <= lim_high: bins_new.append(bin_) if edges_new: edges_new.pop() # pop off last high edge edges_new.append(low) edges_new.append(high) return bins_new, edges_new def plot_histogram(h1, *args, axes=None, norm=None, include_errors=False, log=False, xlim=None, ylim=None, **kwargs): """ Plots a 1D ROOT histogram object using matplotlib """ import numpy as np if isinstance(h1, tuple): bins, edges = h1 else: bins, edges = histogram(h1, include_errors=True) scale = 1. if norm is None else norm/np.sum(bins) bins = [(bin_*scale, err*scale) for (bin_, err) in bins] bins, errs = list(zip(*bins)) left, right = np.array(edges[:-1]), np.array(edges[1:]) X = np.array([left, right]).T.flatten() Y = np.array([bins, bins]).T.flatten() if axes is None: import matplotlib.pyplot as plt axes = plt.gca() axes.set_xlabel(kwargs.pop('xlabel', '')) axes.set_ylabel(kwargs.pop('ylabel', '')) axes.set_title(kwargs.pop('title', '')) if xlim is not None: axes.set_xlim(xlim) if ylim is not None: axes.set_ylim(ylim) # elif not log: # axes.set_ylim((0, None)) axes.plot(X, Y, *args, linewidth=1, **kwargs) if include_errors: axes.errorbar(0.5*(left+right), bins, yerr=errs, color='k', marker=None, linestyle='None', barsabove=True, elinewidth=.7, capsize=1) if log: axes.set_yscale('log') def histogram2d(th2, include_errors=False): """ converts TH2 object to something amenable to plotting w/ matplotlab's pcolormesh """ import numpy as np nbins_x = th2.GetNbinsX() nbins_y = th2.GetNbinsY() xs = np.zeros((nbins_y, nbins_x), np.float64) ys = np.zeros((nbins_y, nbins_x), np.float64) zs = np.zeros((nbins_y, nbins_x), np.float64) for i in range(nbins_x): for j in range(nbins_y): xs[j][i] = th2.GetXaxis().GetBinLowEdge(i+1) ys[j][i] = th2.GetYaxis().GetBinLowEdge(j+1) zs[j][i] = th2.GetBinContent(i+1, j+1) return xs, ys, zs def plot_histogram2d(th2, *args, axes=None, **kwargs): """ Plots a 2D ROOT histogram object using matplotlib """ if axes is None: import matplotlib.pyplot as plt axes = plt.gca() axes.set_xlabel(kwargs.pop('xlabel', '')) axes.set_ylabel(kwargs.pop('ylabel', '')) axes.set_title(kwargs.pop('title', '')) axes.pcolormesh(*histogram2d(th2)) # axes.colorbar() TODO: Re-enable this class StackHist: def __init__(self, title=""): self.title = title self.xlabel = "" self.ylabel = "" self.xlim = (None, None) self.ylim = (None, None) self.logx = False self.logy = False self.backgrounds = [] self.signal = None self.signal_stack = True self.data = None def add_mc_background(self, th1, label, lumi=None, plot_color=''): self.backgrounds.append((label, lumi, to_bin_list(th1), plot_color)) def set_mc_signal(self, th1, label, lumi=None, stack=True, scale=1, plot_color=''): self.signal = (label, lumi, to_bin_list(th1), plot_color) self.signal_stack = stack self.signal_scale = scale def set_data(self, th1, lumi=None, plot_color=''): self.data = ('data', lumi, to_bin_list(th1), plot_color) self.luminosity = lumi def _verify_binning_match(self): bins_count = [len(bins) for _, _, bins, _ in self.backgrounds] if self.signal is not None: bins_count.append(len(self.signal[2])) if self.data is not None: bins_count.append(len(self.data[2])) n_bins = bins_count[0] if any(bin_count != n_bins for bin_count in bins_count): raise ValueError("all histograms must have the same number of bins") self.n_bins = n_bins def save(self, filename, **kwargs): import matplotlib.pyplot as plt plt.ioff() fig = plt.figure() ax = fig.gca() self.do_draw(ax, **kwargs) fig.savefig("figures/"+filename, transparent=True) plt.close(fig) plt.ion() def do_draw(self, axes): self.axeses = [axes] self._verify_binning_match() bottoms = [0]*self.n_bins if self.logx: axes.set_xscale('log') if self.logy: axes.set_yscale('log') def draw_bar(label, lumi, bins, plot_color, scale=1, stack=True, **kwargs): if stack: lefts = [] widths = [] heights = [] for left, right, content in bins: lefts.append(left) widths.append(right-left) if lumi is not None: content *= self.luminosity/lumi content *= scale heights.append(content) axes.bar(lefts, heights, widths, bottoms, label=label, color=plot_color, **kwargs) for i, (_, _, content) in enumerate(bins): if lumi is not None: content *= self.luminosity/lumi content *= scale bottoms[i] += content else: xs = [bins[0][0] - (bins[0][1]-bins[0][0])/2] ys = [0] for left, right, content in bins: width2 = (right-left)/2 if lumi is not None: content *= self.luminosity/lumi content *= scale xs.append(left-width2) ys.append(content) xs.append(right-width2) ys.append(content) xs.append(bins[-1][0] + (bins[-1][1]-bins[-1][0])/2) ys.append(0) axes.plot(xs, ys, label=label, color=plot_color, **kwargs) if self.signal is not None and self.signal_stack: label, lumi, bins, plot_color = self.signal if self.signal_scale != 1: label = r"{}$\times{:d}$".format(label, self.signal_scale) draw_bar(label, lumi, bins, plot_color, scale=self.signal_scale, hatch='/') for background in self.backgrounds: draw_bar(*background) if self.signal is not None and not self.signal_stack: # draw_bar(*self.signal, stack=False, color='k') label, lumi, bins, plot_color = self.signal if self.signal_scale != 1: label = r"{}$\times{:d}$".format(label, self.signal_scale) draw_bar(label, lumi, bins, plot_color, scale=self.signal_scale, stack=False) axes.set_title(self.title) axes.set_xlabel(self.xlabel) axes.set_ylabel(self.ylabel) axes.set_xlim(*self.xlim) # axes.set_ylim(*self.ylim) if self.logy: axes.set_ylim(None, math.exp(math.log(max(bottoms))*1.4)) else: axes.set_ylim(None, max(bottoms)*1.2) axes.legend(frameon=True, ncol=2) add_decorations(axes, self.luminosity, self.energy) def draw(self, axes, save=False, filename=None, **kwargs): self.do_draw(axes, **kwargs) if save: if filename is None: filename = "".join(c for c in self.title if c.isalnum() or c in (' ._+-'))+".png" self.save(filename, **kwargs) class StackHistWithSignificance(StackHist): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def do_draw(self, axes, bin_significance=True, low_cut_significance=False, high_cut_significance=False): bottom_box, _, top_box = axes.get_position().splity(0.28, 0.30) axes.set_position(top_box) super().do_draw(axes) axes.set_xticks([]) rhs_color = '#cc6600' bottom = axes.get_figure().add_axes(bottom_box) bottom_rhs = bottom.twinx() bgs = [0]*self.n_bins for (_, _, bins, _) in self.backgrounds: for i, (left, right, value) in enumerate(bins): bgs[i] += value sigs = [0]*self.n_bins if bin_significance: xs = [] for i, (left, right, value) in enumerate(self.signal[2]): sigs[i] += value xs.append(left) xs, ys = zip(*[(x, sig/(sig+bg)) for x, sig, bg in zip(xs, sigs, bgs) if (sig+bg) > 0]) bottom.plot(xs, ys, '.k') if high_cut_significance: # s/(s+b) for events passing a minimum cut requirement min_bg = [sum(bgs[i:]) for i in range(self.n_bins)] min_sig = [sum(sigs[i:]) for i in range(self.n_bins)] min_xs, min_ys = zip(*[(x, sig/math.sqrt(sig+bg)) for x, sig, bg in zip(xs, min_sig, min_bg) if (sig+bg) > 0]) bottom_rhs.plot(min_xs, min_ys, '->', color=rhs_color) if low_cut_significance: # s/(s+b) for events passing a maximum cut requirement max_bg = [sum(bgs[:i]) for i in range(self.n_bins)] max_sig = [sum(sigs[:i]) for i in range(self.n_bins)] max_xs, max_ys = zip(*[(x, sig/math.sqrt(sig+bg)) for x, sig, bg in zip(xs, max_sig, max_bg) if (sig+bg) > 0]) bottom_rhs.plot(max_xs, max_ys, '-<', color=rhs_color) bottom.set_ylabel(r'$S/(S+B)$') bottom.set_xlim(axes.get_xlim()) bottom.set_ylim((0, 1.1)) if low_cut_significance or high_cut_significance: bottom_rhs.set_ylabel(r'$S/\sqrt{S+B}$') bottom_rhs.yaxis.label.set_color(rhs_color) bottom_rhs.tick_params(axis='y', colors=rhs_color, size=4, width=1.5) # bottom.grid() if __name__ == '__main__': import matplotlib.pyplot as plt from utils import ResultSet rs_TTZ = ResultSet("TTZ", "../data/TTZToLLNuNu_treeProducerSusyMultilepton_tree.root") rs_TTW = ResultSet("TTW", "../data/TTWToLNu_treeProducerSusyMultilepton_tree.root") rs_TTH = ResultSet("TTH", "../data/TTHnobb_mWCutfix_ext1_treeProducerSusyMultilepton_tree.root") rs_TTTT = ResultSet("TTTT", "../data/TTTT_ext_treeProducerSusyMultilepton_tree.root") sh = StackHist('B-Jet Multiplicity') sh.add_mc_background(rs_TTZ.b_jet_count, 'TTZ', lumi=40) sh.add_mc_background(rs_TTW.b_jet_count, 'TTW', lumi=40) sh.add_mc_background(rs_TTH.b_jet_count, 'TTH', lumi=40) sh.set_mc_signal(rs_TTTT.b_jet_count, 'TTTT', lumi=40, scale=10) sh.luminosity = 40 sh.energy = 13 sh.xlabel = 'B-Jet Count' sh.ylabel = r'\# Events' sh.xlim = (-.5, 9.5) sh.signal_stack = False fig = plt.figure() sh.draw(fig.gca()) plt.show() # sh.add_data(rs_TTZ.b_jet_count, 'TTZ')