|
@@ -1,11 +1,63 @@
|
|
#!/usr/bin/env python3
|
|
#!/usr/bin/env python3
|
|
-import math
|
|
|
|
|
|
+from collections import namedtuple
|
|
import matplotlib as mpl
|
|
import matplotlib as mpl
|
|
-# mpl.rc('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']})
|
|
|
|
-# mpl.rc('font', **{'family': 'serif', 'serif': ['Palatino']})
|
|
|
|
-mpl.rc('text', usetex=True)
|
|
|
|
-mpl.rc('figure', dpi=200)
|
|
|
|
-mpl.rc('savefig', dpi=200)
|
|
|
|
|
|
+import numpy as np
|
|
|
|
+from filval.histogram_utils import (hist, hist2d, hist_bin_centers, hist_fit,
|
|
|
|
+ hist_normalize)
|
|
|
|
+# mpl.rc('text', usetex=True)
|
|
|
|
+# mpl.rc('figure', dpi=200)
|
|
|
|
+# mpl.rc('savefig', dpi=200)
|
|
|
|
+
|
|
|
|
+plot_registry = {}
|
|
|
|
+Plot = namedtuple('Plot', ['name', 'filename', 'title', 'desc', 'args'])
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def make_plot(filename=None, title='', scale=1):
|
|
|
|
+ import matplotlib.pyplot as plt
|
|
|
|
+ from functools import wraps
|
|
|
|
+ from os.path import join
|
|
|
|
+ from os import makedirs
|
|
|
|
+ from inspect import signature, getdoc
|
|
|
|
+ from markdown import Markdown
|
|
|
|
+
|
|
|
|
+ def fn_call_to_dict(fn, *args, **kwargs):
|
|
|
|
+ pnames = list(signature(fn).parameters)
|
|
|
|
+ pvals = list(args)+list(kwargs.keys())
|
|
|
|
+ return {k: v for k, v in zip(pnames, pvals)}
|
|
|
|
+
|
|
|
|
+ def process_docs(fn):
|
|
|
|
+ raw = getdoc(fn)
|
|
|
|
+ if raw:
|
|
|
|
+ md = Markdown(extensions=['mdx_math'],
|
|
|
|
+ extension_configs={'mdx_math': {'enable_dollar_delimiter': True}})
|
|
|
|
+ return md.convert(raw)
|
|
|
|
+ else:
|
|
|
|
+ return None
|
|
|
|
+
|
|
|
|
+ def wrap(fn):
|
|
|
|
+ @wraps(fn)
|
|
|
|
+ def f(*args, **kwargs):
|
|
|
|
+ nonlocal filename
|
|
|
|
+ plt.clf()
|
|
|
|
+ plt.gcf().set_size_inches(scale*10, scale*10)
|
|
|
|
+ fn(*args, **kwargs)
|
|
|
|
+ pdict = fn_call_to_dict(fn, *args, **kwargs)
|
|
|
|
+ if filename is None:
|
|
|
|
+ pstr = ','.join('{}:{}'.format(pname, pval)
|
|
|
|
+ for pname, pval in pdict.items())
|
|
|
|
+ filename = fn.__name__ + '::' + pstr
|
|
|
|
+ filename = filename.replace('/', '_').replace('.', '_')+".png"
|
|
|
|
+ plt.tight_layout()
|
|
|
|
+ try:
|
|
|
|
+ makedirs('output/figures')
|
|
|
|
+ except FileExistsError:
|
|
|
|
+ pass
|
|
|
|
+ plt.savefig(join('output/figures', filename))
|
|
|
|
+ plot_registry[fn.__name__] = Plot(fn.__name__, join('figures', filename),
|
|
|
|
+ title, process_docs(fn), pdict)
|
|
|
|
+ return f
|
|
|
|
+
|
|
|
|
+ return wrap
|
|
|
|
|
|
|
|
|
|
def add_decorations(axes, luminosity, energy):
|
|
def add_decorations(axes, luminosity, energy):
|
|
@@ -28,62 +80,22 @@ def add_decorations(axes, luminosity, energy):
|
|
transform=axes.transAxes)
|
|
transform=axes.transAxes)
|
|
|
|
|
|
|
|
|
|
-def to_bin_list(th1):
|
|
|
|
- bins = []
|
|
|
|
- for i in range(th1.GetNbinsX()):
|
|
|
|
- bin_ = i+1
|
|
|
|
-
|
|
|
|
- center = th1.GetBinCenter(bin_)
|
|
|
|
- width = th1.GetBinWidth(bin_)
|
|
|
|
- content = th1.GetBinContent(bin_)
|
|
|
|
- error = th1.GetBinError(bin_)
|
|
|
|
-
|
|
|
|
- bins.append((center-width/2, center+width/2, (content, error)))
|
|
|
|
- return bins
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def histogram(th1, include_errors=False):
|
|
|
|
- edges = []
|
|
|
|
- values = []
|
|
|
|
- bin_list = to_bin_list(th1)
|
|
|
|
- for (l_edge, _, val) in bin_list:
|
|
|
|
- edges.append(l_edge)
|
|
|
|
- values.append(val)
|
|
|
|
- edges.append(bin_list[-1][1])
|
|
|
|
- return values, edges
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def histogram_slice(hist, range_):
|
|
|
|
- bins, edges = hist
|
|
|
|
- lim_low, lim_high = range_
|
|
|
|
- bins_new = []
|
|
|
|
- edges_new = []
|
|
|
|
- for i, (bin_, low, high) in enumerate(zip(bins, edges, edges[1:])):
|
|
|
|
- if low >= lim_low and high <= lim_high:
|
|
|
|
- bins_new.append(bin_)
|
|
|
|
- if edges_new:
|
|
|
|
- edges_new.pop() # pop off last high edge
|
|
|
|
- edges_new.append(low)
|
|
|
|
- edges_new.append(high)
|
|
|
|
- return bins_new, edges_new
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def plot_histogram(h1, *args, axes=None, norm=None, include_errors=False,
|
|
|
|
- log=False, xlim=None, ylim=None, **kwargs):
|
|
|
|
|
|
+def hist_plot(h, *args, axes=None, norm=None, include_errors=False,
|
|
|
|
+ log=False, fig=None, xlim=None, ylim=None, fit=None,
|
|
|
|
+ **kwargs):
|
|
""" Plots a 1D ROOT histogram object using matplotlib """
|
|
""" Plots a 1D ROOT histogram object using matplotlib """
|
|
- import numpy as np
|
|
|
|
- if isinstance(h1, tuple):
|
|
|
|
- bins, edges = h1
|
|
|
|
- else:
|
|
|
|
- bins, edges = histogram(h1, include_errors=True)
|
|
|
|
|
|
+ from inspect import signature
|
|
|
|
+ if norm:
|
|
|
|
+ h = hist_normalize(h, norm)
|
|
|
|
+ values, errors, edges = h
|
|
|
|
|
|
- scale = 1. if norm is None else norm/np.sum(bins)
|
|
|
|
- bins = [(bin_*scale, err*scale) for (bin_, err) in bins]
|
|
|
|
- bins, errs = list(zip(*bins))
|
|
|
|
|
|
+ scale = 1. if norm is None else norm/np.sum(values)
|
|
|
|
+ values = [val*scale for val in values]
|
|
|
|
+ errors = [val*scale for val in errors]
|
|
|
|
|
|
left, right = np.array(edges[:-1]), np.array(edges[1:])
|
|
left, right = np.array(edges[:-1]), np.array(edges[1:])
|
|
X = np.array([left, right]).T.flatten()
|
|
X = np.array([left, right]).T.flatten()
|
|
- Y = np.array([bins, bins]).T.flatten()
|
|
|
|
|
|
+ Y = np.array([values, values]).T.flatten()
|
|
|
|
|
|
if axes is None:
|
|
if axes is None:
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.pyplot as plt
|
|
@@ -101,47 +113,46 @@ def plot_histogram(h1, *args, axes=None, norm=None, include_errors=False,
|
|
|
|
|
|
axes.plot(X, Y, *args, linewidth=1, **kwargs)
|
|
axes.plot(X, Y, *args, linewidth=1, **kwargs)
|
|
if include_errors:
|
|
if include_errors:
|
|
- axes.errorbar(0.5*(left+right), bins, yerr=errs,
|
|
|
|
|
|
+ axes.errorbar(hist_bin_centers(h), values, yerr=errors,
|
|
color='k', marker=None, linestyle='None',
|
|
color='k', marker=None, linestyle='None',
|
|
barsabove=True, elinewidth=.7, capsize=1)
|
|
barsabove=True, elinewidth=.7, capsize=1)
|
|
if log:
|
|
if log:
|
|
axes.set_yscale('log')
|
|
axes.set_yscale('log')
|
|
-
|
|
|
|
-
|
|
|
|
-def histogram2d(th2, include_errors=False):
|
|
|
|
- """ converts TH2 object to something amenable to
|
|
|
|
- plotting w/ matplotlab's pcolormesh
|
|
|
|
- """
|
|
|
|
- import numpy as np
|
|
|
|
- nbins_x = th2.GetNbinsX()
|
|
|
|
- nbins_y = th2.GetNbinsY()
|
|
|
|
- xs = np.zeros((nbins_y, nbins_x), np.float64)
|
|
|
|
- ys = np.zeros((nbins_y, nbins_x), np.float64)
|
|
|
|
- zs = np.zeros((nbins_y, nbins_x), np.float64)
|
|
|
|
- for i in range(nbins_x):
|
|
|
|
- for j in range(nbins_y):
|
|
|
|
- xs[j][i] = th2.GetXaxis().GetBinLowEdge(i+1)
|
|
|
|
- ys[j][i] = th2.GetYaxis().GetBinLowEdge(j+1)
|
|
|
|
- zs[j][i] = th2.GetBinContent(i+1, j+1)
|
|
|
|
-
|
|
|
|
- return xs, ys, zs
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def plot_histogram2d(th2, *args, axes=None, **kwargs):
|
|
|
|
|
|
+ if fit:
|
|
|
|
+ f, p0 = fit
|
|
|
|
+ popt, pcov = hist_fit(h, f, p0)
|
|
|
|
+ fit_xs = np.linspace(X[0], X[-1], 100)
|
|
|
|
+ fit_ys = f(fit_xs, *popt)
|
|
|
|
+ axes.plot(fit_xs, fit_ys, '--g')
|
|
|
|
+ arglabels = list(signature(f).parameters)[1:]
|
|
|
|
+ label_txt = "\n".join('{:7s}={: 0.2G}'.format(label, value)
|
|
|
|
+ for label, value in zip(arglabels, popt))
|
|
|
|
+ axes.text(0.60, 0.95, label_txt, va='top', transform=axes.transAxes,
|
|
|
|
+ fontsize='x-small', family='monospace', usetex=False)
|
|
|
|
+ axes.grid()
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def hist2d_plot(h, *args, axes=None, **kwargs):
|
|
""" Plots a 2D ROOT histogram object using matplotlib """
|
|
""" Plots a 2D ROOT histogram object using matplotlib """
|
|
|
|
+ try:
|
|
|
|
+ values, errors, xs, ys = h
|
|
|
|
+ except (TypeError, ValueError):
|
|
|
|
+ values, errors, xs, ys = hist2d(h)
|
|
|
|
+
|
|
if axes is None:
|
|
if axes is None:
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.pyplot as plt
|
|
axes = plt.gca()
|
|
axes = plt.gca()
|
|
axes.set_xlabel(kwargs.pop('xlabel', ''))
|
|
axes.set_xlabel(kwargs.pop('xlabel', ''))
|
|
axes.set_ylabel(kwargs.pop('ylabel', ''))
|
|
axes.set_ylabel(kwargs.pop('ylabel', ''))
|
|
axes.set_title(kwargs.pop('title', ''))
|
|
axes.set_title(kwargs.pop('title', ''))
|
|
- axes.pcolormesh(*histogram2d(th2))
|
|
|
|
|
|
+ axes.pcolormesh(xs, ys, values,)
|
|
# axes.colorbar() TODO: Re-enable this
|
|
# axes.colorbar() TODO: Re-enable this
|
|
|
|
|
|
|
|
|
|
class StackHist:
|
|
class StackHist:
|
|
|
|
|
|
def __init__(self, title=""):
|
|
def __init__(self, title=""):
|
|
|
|
+ raise NotImplementedError("need to fix to not use to_bin_list")
|
|
self.title = title
|
|
self.title = title
|
|
self.xlabel = ""
|
|
self.xlabel = ""
|
|
self.ylabel = ""
|
|
self.ylabel = ""
|
|
@@ -155,15 +166,15 @@ class StackHist:
|
|
self.data = None
|
|
self.data = None
|
|
|
|
|
|
def add_mc_background(self, th1, label, lumi=None, plot_color=''):
|
|
def add_mc_background(self, th1, label, lumi=None, plot_color=''):
|
|
- self.backgrounds.append((label, lumi, to_bin_list(th1), plot_color))
|
|
|
|
|
|
+ self.backgrounds.append((label, lumi, hist(th1), plot_color))
|
|
|
|
|
|
def set_mc_signal(self, th1, label, lumi=None, stack=True, scale=1, plot_color=''):
|
|
def set_mc_signal(self, th1, label, lumi=None, stack=True, scale=1, plot_color=''):
|
|
- self.signal = (label, lumi, to_bin_list(th1), plot_color)
|
|
|
|
|
|
+ self.signal = (label, lumi, hist(th1), plot_color)
|
|
self.signal_stack = stack
|
|
self.signal_stack = stack
|
|
self.signal_scale = scale
|
|
self.signal_scale = scale
|
|
|
|
|
|
def set_data(self, th1, lumi=None, plot_color=''):
|
|
def set_data(self, th1, lumi=None, plot_color=''):
|
|
- self.data = ('data', lumi, to_bin_list(th1), plot_color)
|
|
|
|
|
|
+ self.data = ('data', lumi, hist(th1), plot_color)
|
|
self.luminosity = lumi
|
|
self.luminosity = lumi
|
|
|
|
|
|
def _verify_binning_match(self):
|
|
def _verify_binning_match(self):
|
|
@@ -254,7 +265,7 @@ class StackHist:
|
|
axes.set_xlim(*self.xlim)
|
|
axes.set_xlim(*self.xlim)
|
|
# axes.set_ylim(*self.ylim)
|
|
# axes.set_ylim(*self.ylim)
|
|
if self.logy:
|
|
if self.logy:
|
|
- axes.set_ylim(None, math.exp(math.log(max(bottoms))*1.4))
|
|
|
|
|
|
+ axes.set_ylim(None, np.exp(np.log(max(bottoms))*1.4))
|
|
else:
|
|
else:
|
|
axes.set_ylim(None, max(bottoms)*1.2)
|
|
axes.set_ylim(None, max(bottoms)*1.2)
|
|
axes.legend(frameon=True, ncol=2)
|
|
axes.legend(frameon=True, ncol=2)
|
|
@@ -300,7 +311,7 @@ class StackHistWithSignificance(StackHist):
|
|
# s/(s+b) for events passing a minimum cut requirement
|
|
# s/(s+b) for events passing a minimum cut requirement
|
|
min_bg = [sum(bgs[i:]) for i in range(self.n_bins)]
|
|
min_bg = [sum(bgs[i:]) for i in range(self.n_bins)]
|
|
min_sig = [sum(sigs[i:]) for i in range(self.n_bins)]
|
|
min_sig = [sum(sigs[i:]) for i in range(self.n_bins)]
|
|
- min_xs, min_ys = zip(*[(x, sig/math.sqrt(sig+bg)) for x, sig, bg in zip(xs, min_sig, min_bg)
|
|
|
|
|
|
+ min_xs, min_ys = zip(*[(x, sig/np.sqrt(sig+bg)) for x, sig, bg in zip(xs, min_sig, min_bg)
|
|
if (sig+bg) > 0])
|
|
if (sig+bg) > 0])
|
|
bottom_rhs.plot(min_xs, min_ys, '->', color=rhs_color)
|
|
bottom_rhs.plot(min_xs, min_ys, '->', color=rhs_color)
|
|
|
|
|
|
@@ -308,7 +319,7 @@ class StackHistWithSignificance(StackHist):
|
|
# s/(s+b) for events passing a maximum cut requirement
|
|
# s/(s+b) for events passing a maximum cut requirement
|
|
max_bg = [sum(bgs[:i]) for i in range(self.n_bins)]
|
|
max_bg = [sum(bgs[:i]) for i in range(self.n_bins)]
|
|
max_sig = [sum(sigs[:i]) for i in range(self.n_bins)]
|
|
max_sig = [sum(sigs[:i]) for i in range(self.n_bins)]
|
|
- max_xs, max_ys = zip(*[(x, sig/math.sqrt(sig+bg)) for x, sig, bg in zip(xs, max_sig, max_bg)
|
|
|
|
|
|
+ max_xs, max_ys = zip(*[(x, sig/np.sqrt(sig+bg)) for x, sig, bg in zip(xs, max_sig, max_bg)
|
|
if (sig+bg) > 0])
|
|
if (sig+bg) > 0])
|
|
bottom_rhs.plot(max_xs, max_ys, '-<', color=rhs_color)
|
|
bottom_rhs.plot(max_xs, max_ys, '-<', color=rhs_color)
|
|
|
|
|