123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446 |
- #!/usr/bin/env python
- import numpy as np
- import matplotlib.pyplot as plt
- from filval.result_set import ResultSet
- from filval.histogram import hist, hist2d, hist_add, hist_norm, hist_scale, hist2d_norm
- from filval.plotting import (decl_plot, render_plots, hist_plot, hist_plot_stack, hist2d_plot,
- Plot, generate_dashboard, hists_to_table)
- an_tttt = ([0.47, 0.33, 0.18, 0.78, 0.49, 0.52, 0.33, 0.49],
- [0, 0, 0, 0, 0, 0, 0, 0], [0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5])
- an_ttw = ([2.29663, 0.508494, 0.161166, 1.03811, 0.256401, 0.127582, 0.181522, 0.141659],
- [0, 0, 0, 0, 0, 0, 0, 0], [0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5])
- an_ttz = ([0.974751, 0.269195, 1e-06, 0.395831, 0.0264703, 0.06816, 0.8804, 0.274265],
- [0, 0, 0, 0, 0, 0, 0, 0], [0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5])
- an_tth = ([1.13826, 0.361824, 0.162123, 0.683917, 0.137608, 0.0632719, 0.554491, 0.197864],
- [0, 0, 0, 0, 0, 0, 0, 0], [0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5])
- @decl_plot
- def plot_yield_grid(rss, tau_category=-1):
- r"""## Event Yield
- The event yield for the eight signal regions defined in AN-17-115. Data is normalized
- to the integrated luminosity of $35.9\textrm{fb}^{-1}$.
- Ignoring taus means both that there is no requirement on number of good taus *and*
- the taus, if present, are not considered for the SS pair.
- If taus are not ignored, any good tau with $p_T$>20Gev is considered in constructing the SS lepton pair. The yields
- are then further broken down by the number of good taus in the event.
- A "good" tau in the above means any tau candidate passing the `byTightIsolationMVArun2v1DBoldDMwLT` ID w/ pt>20GeV.
- It is also required to pass tau-lepton cross cleaning where it must not match any electron or muon within
- $\delta R < 0.4$.
- Truth-matched taus are those that match within $\delta R < 0.3$ with gen-level taus that pass the flag `fromHardProcessDecayed`.
- """
- def get_sr(rs, tm=False):
- if tm:
- if tau_category == 0:
- return hist(rs.SRs_0tmtau)
- if tau_category == 1:
- return hist(rs.SRs_1tmtau)
- elif tau_category == 2:
- return hist(rs.SRs_2tmtau)
- else:
- if tau_category == -1:
- return hist(rs.ignore_tau_SRs)
- elif tau_category == 0:
- return hist(rs.SRs_0tau)
- elif tau_category == 1:
- return hist(rs.SRs_1tau)
- elif tau_category == 2:
- return hist(rs.SRs_2tau)
- _, ((ax_tttt, ax_ttw), (ax_ttz, ax_tth)) = plt.subplots(2, 2)
- tttt, ttw, ttz, tth = [get_sr(rs) for rs in rss]
- tm_tttt, tm_ttw, tm_ttz, tm_tth = [get_sr(rs, True) for rs in rss]
- plt.sca(ax_tttt)
- hist_plot(tttt, title='TTTT', stats=False, label='Mock', include_errors=True)
- if tau_category == -1 and len(tttt[0]) == len(an_tttt[0]):
- hist_plot(an_tttt, title='TTTT', stats=False, label='AN')
- elif tau_category >= 0:
- hist_plot(tm_tttt, title='TTTT', stats=False, label='Truth-Matched Taus', include_errors=True)
- plt.ylim((0, None))
- plt.sca(ax_ttw)
- hist_plot(ttw, title='TTW', stats=False, label='Mock', include_errors=True)
- if tau_category == -1 and len(tttt[0]) == len(an_tttt[0]):
- hist_plot(an_ttw, title='TTW', stats=False, label='AN')
- elif tau_category >= 0:
- hist_plot(tm_ttw, title='TTW', stats=False, label='Truth-Matched Taus', include_errors=True)
- plt.ylim((0, None))
- plt.legend()
- plt.sca(ax_ttz)
- hist_plot(ttz, title='TTZ', stats=False, label='Mock', include_errors=True)
- if tau_category == -1 and len(tttt[0]) == len(an_tttt[0]):
- hist_plot(an_ttz, title='TTZ', stats=False, label='AN')
- elif tau_category >= 0:
- hist_plot(tm_ttz, title='TTZ', stats=False, label='Truth-Matched Taus', include_errors=True)
- plt.ylim((0, None))
- plt.xlabel('Signal Region')
- plt.sca(ax_tth)
- hist_plot(tth, title='TTH', stats=False, label='Mock', include_errors=True)
- if tau_category == -1 and len(tttt[0]) == len(an_tttt[0]):
- hist_plot(an_tth, title='TTH', stats=False, label='AN')
- elif tau_category >= 0:
- hist_plot(tm_tth, title='TTH', stats=False, label='Truth-Matched Taus', include_errors=True)
- plt.ylim((0, None))
- plt.xlabel('Signal Region')
- def to_table(hists):
- return hists_to_table(hists, row_labels=['TTTT', 'TTW', 'TTZ', 'TTH'],
- column_labels=[f'SR{n}' for n in range(1, len(tttt[0])+1)])
- tables = '<h2>Mock</h2>'
- tables += to_table([tttt, ttw, ttz, tth])
- if tau_category == -1:
- tables += '<h2>AN</h2>'
- tables += to_table([an_tttt, an_ttw, an_ttz, an_tth])
- elif tau_category >= 0:
- tables += '<h2>TM Taus</h2>'
- tables += to_table([tm_tttt, tm_ttw, tm_ttz, tm_tth])
- return tables
- @decl_plot
- def plot_yield_v_gen(rss, tau_category=-1):
- r"""## Event Yield Vs. # of Generated Taus
- """
- def get_sr(rs):
- h = None
- if tau_category == 0:
- h = rs.SRs_0tmtau_diff_nGenTau
- if tau_category == 1:
- h = rs.SRs_1tmtau_diff_nGenTau
- elif tau_category == 2:
- h = rs.SRs_2tmtau_diff_nGenTau
- return hist2d_norm(hist2d(h), norm=1, axis=0)
- _, ((ax_tttt, ax_ttw), (ax_ttz, ax_tth)) = plt.subplots(2, 2)
- tttt, ttw, ttz, tth = [get_sr(rs) for rs in rss]
- def do_plot(h, title):
- hist2d_plot(h, title=title, txt_format='{:.2f}')
- plt.sca(ax_tttt)
- do_plot(tttt, 'TTTT')
- plt.ylabel("\# Gen Taus")
- plt.sca(ax_ttw)
- do_plot(ttw, 'TTW')
- plt.legend()
- plt.sca(ax_ttz)
- do_plot(ttz, 'TTZ')
- plt.xlabel('Signal Region')
- plt.ylabel("\# Gen Taus")
- plt.sca(ax_tth)
- do_plot(tth, 'TTH')
- plt.xlabel('Signal Region')
- @decl_plot
- def plot_nGen_v_nSel(rss):
- _, ((ax_tttt, ax_ttw), (ax_ttz, ax_tth)) = plt.subplots(2, 2)
- tttt, ttw, ttz, tth = [hist2d(rs.nGen_v_RecoTaus_in_SR) for rs in rss]
- def do_plot(h, title):
- hist2d_plot(h, title=title, txt_format='{:.2f}')
- plt.sca(ax_tttt)
- do_plot(tttt, 'TTTT')
- plt.ylabel("\# Selected Taus")
- plt.sca(ax_ttw)
- do_plot(ttw, 'TTW')
- plt.legend()
- plt.sca(ax_ttz)
- do_plot(ttz, 'TTZ')
- plt.xlabel('\# Gen Taus')
- plt.ylabel("\# Selected Taus")
- plt.sca(ax_tth)
- do_plot(tth, 'TTH')
- plt.xlabel('\# Gen Taus')
- @decl_plot
- def plot_yield_stack(rss):
- r"""## Event Yield - Stacked
- The event yield for the eight signal regions defined in AN-17-115. Data is normalized
- to the Moriond 2018 integrated luminosity ($35.9\textrm{fb}^{-1}$). Code for the histogram generation is
- here: <https://github.com/cfangmeier/FTAnalysis/blob/master/studies/tau/Yield.C>
- """
- tttt, ttw, ttz, tth = map(lambda rs: hist(rs.SRs), rss)
- hist_plot_stack([ttw, ttz, tth], labels=['TTW', 'TTZ', 'TTH'])
- tttt = tttt[0]*10, tttt[1], tttt[2]
- hist_plot(tttt, label='TTTT (x10)', stats=False, color='k')
- plt.ylim((0, 60))
- plt.xlabel('Signal Region')
- plt.legend()
- @decl_plot
- def plot_lep_multi(rss, dataset):
- _, (ax_els, ax_mus, ax_taus) = plt.subplots(3, 1)
- els = list(map(lambda rs: hist_norm(hist(rs.nEls)), rss))
- mus = list(map(lambda rs: hist_norm(hist(rs.nMus)), rss))
- taus = list(map(lambda rs: hist_norm(hist(rs.nTaus)), rss))
- def _plot(ax, procs):
- plt.sca(ax)
- tttt, ttw, ttz, tth = procs
- h = {'TTTT': tttt,
- 'TTW': ttw,
- 'TTZ': ttz,
- 'TTH': tth}[dataset]
- hist_plot(h, stats=False, label=dataset)
- _plot(ax_els, els)
- plt.xlabel('\\# Good Electrons')
- plt.legend()
- _plot(ax_mus, mus)
- plt.xlabel('\\# Good Muons')
- _plot(ax_taus, taus)
- plt.xlabel('\\# Good Taus')
- @decl_plot
- def plot_sig_strength(rss):
- r""" The signal strength of the TTTT signal defined as
- $\frac{S}{\sqrt{S+B}}$
- """
- tttt, ttw, ttz, tth = map(lambda rs: hist(rs.SRs), rss)
- bg = hist_add(ttw, ttz, tth)
- strength = tttt[0] / np.sqrt(tttt[0] + bg[0])
- hist_plot((strength, tttt[1], tttt[2]), stats=False)
- @decl_plot
- def plot_event_obs(rss, dataset, in_signal_region=True):
- r"""The distribution of $N_{jet}$, $N_{Bjet}$, MET, and $H_T$ in either all events
- or only signal region (igoring taus) events.
- """
- _, ((ax_njet, ax_nbjet), (ax_ht, ax_met)) = plt.subplots(2, 2)
- # tttt, ttw, ttz, tth = map(lambda rs: hist(rs.SRs), rss)
- tttt, ttw, ttz, tth = rss
- rs = {'TTTT': tttt,
- 'TTW': ttw,
- 'TTZ': ttz,
- 'TTH': tth}[dataset]
- def _plot(ax, obs):
- plt.sca(ax)
- if in_signal_region:
- h = {'MET': rs.met_in_SR,
- 'HT': rs.ht_in_SR,
- 'NJET': rs.njet_in_SR,
- 'NBJET': rs.nbjet_in_SR}[obs]
- else:
- h = {'MET': rs.met,
- 'HT': rs.ht,
- 'NJET': rs.njet,
- 'NBJET': rs.nbjet}[obs]
- hist_plot(hist(h), stats=False, label=dataset, xlabel=obs)
- _plot(ax_njet, 'NJET')
- _plot(ax_nbjet, 'NBJET')
- _plot(ax_ht, 'HT')
- _plot(ax_met, 'MET')
- @decl_plot
- def plot_event_obs_stack(rss, in_signal_region=True):
- r"""
- """
- _, ((ax_njet, ax_nbjet), (ax_ht, ax_met)) = plt.subplots(2, 2)
- def _plot(ax, obs):
- plt.sca(ax)
- if in_signal_region:
- attr = {'MET': 'met_in_SR',
- 'HT': 'ht_in_SR',
- 'NJET': 'njet_in_SR',
- 'NBJET': 'nbjet_in_SR'}[obs]
- else:
- attr = {'MET': 'met',
- 'HT': 'ht',
- 'NJET': 'njet',
- 'NBJET': 'nbjet'}[obs]
- tttt, ttw, ttz, tth = map(lambda rs: hist(getattr(rs, attr)), rss)
- hist_plot_stack([ttw, ttz, tth], labels=["TTW", "TTZ", "TTH"])
- hist_plot(hist_scale(tttt, 5), label="TTTT (x5)", color='k')
- plt.xlabel(obs)
- _plot(ax_njet, 'NJET')
- _plot(ax_nbjet, 'NBJET')
- plt.legend()
- _plot(ax_ht, 'HT')
- _plot(ax_met, 'MET')
- # @decl_plot
- # def plot_s_over_b(rss):
- # def get_sr(rs):
- # h = None
- # if tau_category == 0:
- # h = rs.SRs_0tmtau_diff_nGenTau
- # if tau_category == 1:
- # h = rs.SRs_1tmtau_diff_nGenTau
- # elif tau_category == 2:
- # h = rs.SRs_2tmtau_diff_nGenTau
- # return hist2d_norm(hist2d(h), norm=1, axis=0)
- #
- # _, ((ax_tttt, ax_ttw), (ax_ttz, ax_tth)) = plt.subplots(2, 2)
- # tttt =
- # ttw, ttz, tth = [get_sr(rs) for rs in rss]
- # pass
- @decl_plot
- def plot_tau_purity(rss):
- _, ((ax_tttt, ax_ttw), (ax_ttz, ax_tth)) = plt.subplots(2, 2)
- tttt, ttw, ttz, tth = list(map(lambda rs: hist(rs.tau_purity_v_pt), rss))
- def _plot(ax, dataset):
- plt.sca(ax)
- h = {'TTTT': tttt,
- 'TTW': ttw,
- 'TTZ': ttz,
- 'TTH': tth}[dataset]
- hist_plot(h, stats=False, label=dataset)
- plt.text(200, 0.05, dataset)
- plt.xlabel(r"$P_T$(GeV)")
- _plot(ax_tttt, 'TTTT')
- _plot(ax_ttw, 'TTW')
- _plot(ax_ttz, 'TTZ')
- _plot(ax_tth, 'TTH')
- if __name__ == '__main__':
- data_path = 'data/output_new_sr_new_id_binning/'
- save_plots = True
- # First create a ResultSet object which loads all of the objects from root file
- # into memory and makes them available as attributes
- rss = (ResultSet("tttt", data_path+'yield_tttt.root'),
- ResultSet("ttw", data_path+'yield_ttw.root'),
- ResultSet("ttz", data_path+'yield_ttz.root'),
- ResultSet("tth", data_path+'yield_tth.root'))
- # Next, declare all of the (sub)plots that will be assembled into full
- # figures later
- yield_tau_ignore_tau = plot_yield_grid, (rss, -1)
- yield_tau_0tau = plot_yield_grid, (rss, 0)
- yield_tau_1tau = plot_yield_grid, (rss, 1)
- yield_tau_2tau = plot_yield_grid, (rss, 2)
- tttt_event_obs_in_sr = plot_event_obs, (rss, 'TTTT'), {'in_signal_region': True}
- ttw_event_obs_in_sr = plot_event_obs, (rss, 'TTW'), {'in_signal_region': True}
- ttz_event_obs_in_sr = plot_event_obs, (rss, 'TTZ'), {'in_signal_region': True}
- tth_event_obs_in_sr = plot_event_obs, (rss, 'TTH'), {'in_signal_region': True}
- tttt_event_obs = plot_event_obs, (rss, 'TTTT'), {'in_signal_region': False}
- ttw_event_obs = plot_event_obs, (rss, 'TTW'), {'in_signal_region': False}
- ttz_event_obs = plot_event_obs, (rss, 'TTZ'), {'in_signal_region': False}
- tth_event_obs = plot_event_obs, (rss, 'TTH'), {'in_signal_region': False}
- tttt_lep_multi = plot_lep_multi, (rss, 'TTTT')
- ttw_lep_multi = plot_lep_multi, (rss, 'TTW')
- ttz_lep_multi = plot_lep_multi, (rss, 'TTZ')
- tth_lep_multi = plot_lep_multi, (rss, 'TTH')
- yield_v_gen_0tm = plot_yield_v_gen, (rss, 0)
- yield_v_gen_1tm = plot_yield_v_gen, (rss, 1)
- yield_v_gen_2tm = plot_yield_v_gen, (rss, 2)
- # tau_purity = plot_tau_purity, (rss)
- nGen_v_nSel = plot_nGen_v_nSel, (rss,)
- # Now assemble the plots into figures.
- plots = [
- Plot([[yield_tau_ignore_tau]],
- 'Yield Ignoring Taus'),
- Plot([[yield_tau_0tau]],
- 'Yield For events with 0 Tau'),
- Plot([[yield_tau_1tau]],
- 'Yield For events with 1 Tau'),
- Plot([[yield_tau_2tau]],
- 'Yield For events with 2 or more Tau'),
- # Plot([[yield_v_gen_0tm]],
- # 'Yield For events with 0 TM Tau Vs Gen Tau'),
- # Plot([[yield_v_gen_1tm]],
- # 'Yield For events with 1 TM Tau Vs Gen Tau'),
- # Plot([[yield_v_gen_2tm]],
- # 'Yield For events with 2 TM Tau Vs Gen Tau'),
- Plot([[nGen_v_nSel]],
- r'#Generated tau vs. #Selected tau'),
- Plot([[tttt_lep_multi]],
- 'Lepton Multiplicity - TTTT'),
- Plot([[ttw_lep_multi]],
- 'Lepton Multiplicity - TTW'),
- Plot([[ttz_lep_multi]],
- 'Lepton Multiplicity - TTZ'),
- Plot([[tth_lep_multi]],
- 'Lepton Multiplicity - TTH'),
- Plot([[tttt_event_obs_in_sr]],
- 'TTTT - Event Observables (In SR)'),
- Plot([[ttw_event_obs_in_sr]],
- 'TTW - Event Observables (In SR)'),
- Plot([[ttz_event_obs_in_sr]],
- 'TTZ - Event Observables (In SR)'),
- Plot([[tth_event_obs_in_sr]],
- 'TTH - Event Observables (In SR)'),
- # Plot([[tttt_event_obs]],
- # 'TTTT - Event Observables (All Events)'),
- # Plot([[ttw_event_obs]],
- # 'TTW - Event Observables (All Events)'),
- # Plot([[ttz_event_obs]],
- # 'TTZ - Event Observables (All Events)'),
- # Plot([[tth_event_obs]],
- # 'TTH - Event Observables (All Events)'),
- # Plot([[yield_notau]],
- # 'Yield Without Tau'),
- # Plot([[yield_tau_stack]],
- # 'Yield With Tau Stacked'),
- # Plot([[yield_notau_stack]],
- # 'Yield Without Tau Stacked'),
- # Plot([[yield_tau_stack],
- # [yield_notau_stack]],
- # 'Event Yield, top: with tau, bottom: no tau'),
- # Plot([[sig_strength_tau],
- # [sig_strength_notau]],
- # 'Signal Strength'),
- # Plot([[event_obs_stack]],
- # 'Event Observables'),
- # Plot([[tau_purity]],
- # 'Tau Purity'),
- ]
- # Finally, render and save the plots and generate the html+bootstrap
- # dashboard to view them
- render_plots(plots, to_disk=save_plots)
- if not save_plots:
- generate_dashboard(plots, 'TTTT Yields',
- output='yields.html',
- source=__file__,
- ana_source=("https://github.com/cfangmeier/FTAnalysis/commit/"
- "0cbdac4509391fffb9fff87d0521b7dd0a30a55c"),
- config=data_path+'config.yaml'
- )
|