123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981 |
- /**
- * @file
- * @author Caleb Fangmeier <caleb@fangmeier.tech>
- * @version 0.1
- *
- * @section LICENSE
- *
- *
- * MIT License
- *
- * Copyright (c) 2017 Caleb Fangmeier
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- *
- * @section DESCRIPTION
- * This header defines a set of generic classes that wrap up "values". In
- * essence, a Value<T> object is just something that contains a value of type T
- * and can provide it when requested. The usefulness stems from composing
- * values together with calculations. This enables very clear dependency
- * mapping and a way to know clearly how every value was arrived at. This could
- * be used to, for example, automatically generate commentary for plots that
- * explain the exect calculation used to create it. Or easily making a series
- * of plots contrasting different values that have been composed slightly
- * differently.
- */
- #ifndef value_hpp
- #define value_hpp
- #include <iomanip>
- #include <iostream>
- #include <sstream>
- #include <utility>
- #include <algorithm>
- #include <map>
- #include <limits>
- #include <vector>
- #include <tuple>
- #include <initializer_list>
- #include <functional>
- #include "log.hpp"
- /**
- * The namespace containing all filval classes and functions.
- */
- namespace fv{
- template <typename F, typename TUPLE, bool Done, int Total, int... N>
- struct call_impl
- {
- static auto call(F& f, TUPLE && t)
- {
- return call_impl<F, TUPLE, Total == 1 + sizeof...(N), Total, N..., sizeof...(N)>::call(f, std::forward<TUPLE>(t));
- }
- };
- template <typename F, typename TUPLE, int Total, int... N>
- struct call_impl<F, TUPLE, true, Total, N...>
- {
- static auto call(F& f, TUPLE && t)
- {
- return f(std::get<N>(std::forward<TUPLE>(t))...);
- }
- };
- /**
- * This calls a function of type F with the contents of the tuple as separate arguments.
- * \see http://stackoverflow.com/questions/10766112/c11-i-can-go-from-multiple-args-to-tuple-but-can-i-go-from-tuple-to-multiple
- */
- template <typename F, typename TUPLE>
- auto call(F& f, TUPLE && t)
- {
- typedef typename std::decay<TUPLE>::type ttype;
- return call_impl<F, TUPLE, 0 == std::tuple_size<ttype>::value, std::tuple_size<ttype>::value>::call(f, std::forward<TUPLE>(t));
- }
- template<typename> class Function; // undefined
- /**
- * Parent class to all Function classes. Holds a class-level collection of all
- * created function objects.
- */
- class GenFunction {
- private:
- std::string name;
- std::string impl;
- protected:
- inline static bool in_register_function=false;
- public:
- /**
- * Static mapping of functions from their name to the object wrapper of
- * the function.
- */
- inline static std::map<const std::string, GenFunction*> function_registry;
- GenFunction(const std::string& name, const std::string& impl)
- :name(name),
- impl(impl){ }
- virtual ~GenFunction() { };
- std::string& get_name(){
- return name;
- }
- /**
- * Attempt to invoke clang-format for the purpose of printing out
- * nicely formatted functions to the log file. If clang-format is not
- * present, this function just passes through the code unmodified.
- */
- static std::string format_code(const std::string& code){
- std::stringstream code_out("");
- std::string command("echo \""+code+"\" | clang-format");
- char buffer[255];
- FILE *stream = popen(command.c_str(), "r");
- while (fgets(buffer, 255, stream) != NULL)
- code_out << buffer;
- if (pclose(stream) == 0)
- return code_out.str();
- else
- return code;
- }
- static std::string summary(){
- std::stringstream ss;
- ss << "The following functions have been registered" << std::endl;
- for(auto p : function_registry){
- if (p.second == nullptr) continue;
- ss << "-->" << p.second->name << "@" << p.second << std::endl;
- ss << format_code(p.second->impl);
- }
- return ss.str();
- }
- template <typename T>
- static Function<T>& register_function(const std::string& name, std::function<T> f, const std::string& impl){
- in_register_function = true;
- Function<T>* func;
- if (GenFunction::function_registry[name] != nullptr){
- func = dynamic_cast<Function<T>*>(GenFunction::function_registry[name]);
- if (func == nullptr){
- ERROR("Trying to register function which has already been registered with a different type");
- }
- } else {
- func = new Function<T>(name, impl, f);
- GenFunction::function_registry[name] = func;
- }
- in_register_function = false;
- return *func;
- }
- template <typename T>
- static Function<T>& lookup_function(const std::string& name){
- if (GenFunction::function_registry[name] == nullptr){
- CRITICAL("Function \"" << name << "\" not previously registered", -1);
- } else {
- Function<T>* func = dynamic_cast<Function<T>*>(GenFunction::function_registry[name]);
- if (func == nullptr){
- CRITICAL("Function \"" << name << "\" request and register have mismatched types", -1);
- }
- return *GenFunction::function_registry[name];
- }
- }
- };
- /**
- * In order to enable proper provenance tracking, and at the same time keep
- * the ability to embed functions into values, the Function class should be
- * used. It is simply a wrapper around a std::function that also has a name.
- * This name is used when generating the name of values that use the function.
- * A function name is automatically prepended with "func::" to explicitly state
- * that the value is the result of a computation encoded within the function
- * object, and not from some other Value object. Unfortunately, it is up to the
- * user to find where that function is defined in the source code to inspect
- * what it is doing. But hopefully this isn't too onerous by just using grep.
- */
- template <typename R, typename... ArgTypes>
- class Function<R(ArgTypes...)> : public GenFunction {
- private:
- std::function<R(ArgTypes...)> f;
- public:
- Function(const std::string& name, const std::string& impl, std::function<R(ArgTypes...)> f)
- :GenFunction(name, impl), f(f){
- if (!in_register_function) {
- WARNING("Don't instantiate Function objects directly! Use GenFunction::register_function instead.");
- }
- }
- Function(const std::string& name, std::function<R(ArgTypes...)> f)
- :Function(name, "N/A", f){ }
- ~Function() { }
- R operator()(ArgTypes ...args){
- return f(args...);
- }
- };
- #define FUNC(f) f, #f
- /**
- * A type-agnostic value.
- * It is necessary to create a type-agnostic parent class to Value so that
- * it is possible to handle collections of them. GenValue also provides the
- * rest of the type-independent interface to Value.
- */
- class GenValue;
- typedef std::map<std::string, GenValue*> ValueSet;
- class GenValue{
- private:
- /**
- * The name of the value.
- * This is used to allow for dynamic lookup of
- * values based on their name via GenValue::get_value.
- */
- std::string name;
- protected:
- /**
- * Mark the internal value as invalid. This is needed for DerivedValue
- * to force a recalculation of the internal value when a new
- * observation is loaded into memory. It is called automatically for
- * all GenValue objects when reset is called.
- */
- virtual void _reset() = 0;
- /**
- * A static mapping containing all created Value objects.
- * Every value object must have a unique name, and this name is used as
- * a key in values to that object. This is used to enable more dynamic
- * creation of objects as well as avoiding the uneccesary passing of
- * pointers.
- */
- inline static std::map<const std::string, GenValue*> values;
- /**
- * Composite value names are typically nested. This makes complex
- * values have rather unwieldy names. Therefore, one can declare
- * aliases which allow for more human-usable names to be used. When a
- * value is requested by name, an alias with that value takes precidence
- * over a name with that value.
- */
- inline static std::map<const std::string, GenValue*> aliases;
- public:
- GenValue(const std::string& name, const std::string& alias)
- :name(name){
- values[name] = this;
- if (alias != "")
- GenValue::alias(alias, this);
- }
- const std::string& get_name(){
- return name;
- }
- void set_name(const std::string& new_name){
- values[name] = nullptr;
- name = new_name;
- values[name] = this;
- }
- static void reset(){
- for (auto val : values){
- if (val.second != nullptr){
- val.second->_reset();
- }
- }
- }
- static GenValue* get_value(const std::string& name){
- if (aliases[name] != nullptr)
- return aliases[name];
- else if (values[name] != nullptr)
- return values[name];
- else{
- ERROR("Could not find alias or value \"" << name << "\". I'll tell you the ones I know about." << std::endl
- << summary());
- CRITICAL("Aborting... :(",-1);
- }
- }
- static void alias(const std::string& name, GenValue* value){
- if (aliases[name] != nullptr){
- WARNING("WARNING: alias \"" << name << "\" overrides previous entry.");
- }
- aliases[name] = value;
- }
- static GenValue* alias(const std::string& name){
- if (values[name] != nullptr){
- WARNING("Alias \"" << name << "\" does not exist.");
- }
- return aliases[name];
- }
- static std::string summary(){
- std::stringstream ss;
- ss << "The following values have been created: " << std::endl;
- for (auto value : values){
- if (value.second == nullptr) continue;
- ss << "\t\"" << value.first << "\" at address " << value.second << std::endl;
- }
- ss << "And these aliases:" << std::endl;
- for (auto alias : aliases){
- std::string orig("VOID");
- if (alias.second == nullptr) continue;
- for (auto value : values){
- if (alias.second == value.second){
- orig = value.second->get_name();
- break;
- }
- }
- ss << "\t\"" << alias.first << "\" referring to \"" << orig << "\"" << std::endl;
- }
- return ss.str();
- }
- friend std::ostream& operator<<(std::ostream& os, const GenValue& gv);
- };
- std::ostream& operator<<(std::ostream& os, GenValue& gv){
- os << gv.get_name();
- return os;
- }
- /**
- * A generic value.
- * In order to facilitate run-time creation of analysis routines, it is
- * necessary to have some ability to get and store *values*. Values can either
- * be directly taken from some original data source (i.e. ObservedValue), or
- * they can be a function of some other set of values (i.e. DerivedValue). They
- * template class T of Value<T> is the type of thing that is returned upon
- * calling get_value().
- */
- template <typename T>
- class Value : public GenValue{
- public:
- Value(const std::string& name, const std::string& alias="")
- :GenValue(name, alias){ }
- /** Calculate, if necessary, and return the value held by this object.
- */
- virtual T& get_value() = 0;
- };
- /**
- * A value supplied by the dataset, not derived.
- * An ObservedValue is the interface to your dataset. Upon creation, an
- * ObservedValue is given a pointer to an object of type T. When an observation
- * is loaded into memory, the value at the location referenced by that pointer
- * must be updated with the associated data from that observation. This is the
- * responsibility of whatever DataSet implementation is being used. This object
- * then will read that data and return it when requested.
- */
- template <typename T>
- class ObservedValue : public Value<T>{
- private:
- T *val_ref;
- void _reset(){ }
- public:
- ObservedValue(const std::string& name, T* val_ref, const std::string& alias="")
- :Value<T>(name, alias),
- val_ref(val_ref){ }
- T& get_value(){
- return *val_ref;
- }
- };
- /**
- * A Value derived from some other Values, not directly from the dataset.
- * A DerivedValue is generally defined as some function of other Value objects.
- * For example, a Pair is a function of two other Value objects that makes a
- * pair of them. Note that these other Value objects are free to be either
- * ObservedValues or other DerivedValues.
- *
- * It is desireable from a performance standpoint that each DerivedValue be
- * calculated no more than once per observation. Therefore, when a get_value is
- * called on a DerivedValue, it first checks whether the value that it holds is
- * **valid**, meaning it has already been calculated for this observation. If
- * so, it simply returns the value. If not, the update_value function is called
- * to calculate the value. and then the newly calculated value is marked as
- * valid and returned.
- */
- template <typename T>
- class DerivedValue : public Value<T>{
- private:
- void _reset(){
- value_valid = false;
- }
- protected:
- T value;
- bool value_valid;
- /**
- * Updates the internal value.
- * This function should be overridden by any child class to do the
- * actual work of updating value based on whatever rules the class
- * chooses. Normally, this consists of geting the values from some
- * associated Value objects, doing some calculation on them, and
- * storing the result in value.
- */
- virtual void update_value() = 0;
- public:
- DerivedValue(const std::string& name, const std::string& alias="")
- :Value<T>(name, alias),
- value_valid(false) { }
- T& get_value(){
- if (!value_valid){
- update_value();
- value_valid = true;
- }
- return value;
- }
- };
- /**
- * A std::vector wrapper around a C-style array.
- * In order to make some of the higher-level Value types easier to work with,
- * it is a good idea to wrap all arrays in the original data source with
- * std::vector objects. To do this, it is necessary to supply both a Value
- * object containing the array itself as well as another Value object
- * containing the size of that array. Currently, update_value will simply copy
- * the contents of the array into the interally held vector.
- */
- template <typename T>
- class WrapperVector : public DerivedValue<std::vector<T> >{
- private:
- Value<int>* size;
- Value<T*>* data;
- void update_value(){
- int n = size->get_value();
- T* data_ref = data->get_value();
- this->value.assign(data_ref, data_ref+n);
- }
- public:
- WrapperVector(Value<int>* size, Value<T*>* data, const std::string& alias="")
- :DerivedValue<std::vector<T> >("vectorOf("+size->get_name()+","+data->get_name()+")", alias),
- size(size), data(data){ }
- };
- /**
- * Creates a std::pair type from a two other Value objects.
- */
- template <typename T1, typename T2>
- class Pair : public DerivedValue<std::pair<T1, T2> >{
- protected:
- std::pair<Value<T1>*, Value<T2>* > value_pair;
- void update_value(){
- this->value.first = value_pair.first->get_value();
- this->value.second = value_pair.second->get_value();
- }
- public:
- Pair(Value<T1> *value1, Value<T2> *value2, const std::string alias="")
- :DerivedValue<std::pair<T1, T2> >("pair("+value1->get_name()+","+value2->get_name()+")", alias),
- value_pair(value1, value2){ }
- };
- template<typename... T> class _Zip;
- template<>
- class _Zip<> {
- protected:
- int _get_size(){
- return std::numeric_limits<int>::max();
- }
- std::tuple<> _get_at(int idx){
- return std::make_tuple();
- }
- std::string _get_name(){
- return "";
- }
- public:
- _Zip() { }
- };
- template<typename Head, typename... Tail>
- class _Zip<Head, Tail...> : private _Zip<Tail...> {
- protected:
- Value<std::vector<Head>>* head;
- int _get_size(){
- int this_size = head->get_value().size();
- int rest_size = _Zip<Tail...>::_get_size();
- return std::min(this_size, rest_size);
- }
- typename std::tuple<Head,Tail...> _get_at(int idx){
- auto tail_tuple = _Zip<Tail...>::_get_at(idx);
- return std::tuple_cat(std::make_tuple(head->get_value()[idx]),tail_tuple);
- }
- std::string _get_name(){
- return head->get_name()+","+_Zip<Tail...>::_get_name();
- }
- public:
- _Zip() { }
- _Zip(Value<std::vector<Head>>* head, Value<std::vector<Tail>>*... tail)
- : _Zip<Tail...>(tail...),
- head(head) { }
- };
- /**
- * Zips a series of vectors together. Can be combined with Map to
- * yield a Value whose elements are individually a function of the
- * corresponding elements of the vectors that were zipped together. For those
- * familiar with python, it accompilishes the same thing as
- * @code{.py}
- * xs = [1,2,3,4]
- * ys = [10,20,30,40]
- * print(list(map(lambda t:t[0]+t[1],zip(xs,ys))))
- * @endcode
- * which outputs
- * @code
- * [11, 22, 33, 44]
- * @endcode
- */
- template <typename... ArgTypes>
- class Zip : public DerivedValue<std::vector<std::tuple<ArgTypes...>>>,
- private _Zip<ArgTypes...>{
- protected:
- void update_value(){
- this->value.clear();
- int size = _Zip<ArgTypes...>::_get_size();
- for(int i=0; i<size; i++){
- this->value.push_back(_Zip<ArgTypes...>::_get_at(i));
- }
- }
- std::string _get_name(){
- return "zip("+_Zip<ArgTypes...>::_get_name()+")";
- }
- public:
- Zip(Value<std::vector<ArgTypes>>*... args, const std::string& alias)
- :DerivedValue<std::vector<std::tuple<ArgTypes...>>>("", alias),
- _Zip<ArgTypes...>(args...) {
- this->set_name(_get_name());
- }
- };
- template<typename> class Map; // undefined
- /**
- * Maps a function over an input vector. The input vector must be a vector of
- * tuples, where the the elements of the tuple match the arguments of the
- * function. For example if the function takes two floats as arguments, the
- * tuple should contain two floats. The Value object required by Map will
- * typically be created as a Zip.
- */
- template <typename Ret, typename... ArgTypes>
- class Map<Ret(ArgTypes...)> : public DerivedValue<std::vector<Ret>>{
- private:
- typedef Value<std::vector<std::tuple<ArgTypes...>>> arg_type;
- Function<Ret(ArgTypes...)>& fn;
- arg_type* arg;
- void update_value(){
- this->value.clear();
- for(auto tup : arg->get_value()){
- this->value.push_back(call(fn,tup));
- }
- }
- public:
- Map(Function<Ret(ArgTypes...)>& fn, arg_type* arg, const std::string& alias)
- :DerivedValue<std::vector<Ret>>("map("+fn.get_name()+":"+arg->get_name()+")", alias),
- fn(fn), arg(arg){ }
- };
- /**
- * Returns the elements in a vector that pass a test function. The elements on
- * the vector must be tuples. Typically this will be used in conjunction with
- * Zip and Map.
- */
- template<typename... ArgTypes>
- class TupFilter : public DerivedValue<std::vector<std::tuple<ArgTypes...>>>{
- private:
- typedef std::vector<std::tuple<ArgTypes...>> value_type;
- Function<bool(ArgTypes...)>& filter;
- Value<value_type>* arg;
- void update_value(){
- this->value.clear();
- for(auto val : arg->get_value()){
- if(call(filter,val))
- this->value.push_back(val);
- }
- }
- public:
- TupFilter(Function<bool(ArgTypes...)>& filter, Value<value_type>* arg, const std::string alias)
- :DerivedValue<value_type>("filter("+filter.get_name()+":"+arg->get_name()+")", alias),
- filter(filter), arg(arg) { }
- };
- template<typename... T> class _Tuple;
- template<>
- class _Tuple<> {
- protected:
- std::tuple<> _get_value(){
- return std::make_tuple();
- }
- std::string _get_name(){
- return "";
- }
- public:
- _Tuple() { }
- };
- template<typename Head, typename... Tail>
- class _Tuple<Head, Tail...> : private _Tuple<Tail...> {
- protected:
- Value<Head>* head;
- typename std::tuple<Head,Tail...> _get_value(){
- auto tail_tuple = _Tuple<Tail...>::_get_value();
- return std::tuple_cat(std::make_tuple(head->get_value()),tail_tuple);
- }
- std::string _get_name(){
- return head->get_name()+","+_Tuple<Tail...>::_get_name();
- }
- public:
- _Tuple() { }
- _Tuple(Value<Head>* head, Value<Tail>*... tail)
- : _Tuple<Tail...>(tail...),
- head(head) { }
- };
- /**
- * Takes a series of Value objects and bundles them together into a std::tuple
- * object. Typically, this is most usefull when one wants to apply a function
- * to a few values and store the result. This class can be used in conjunction
- * with Apply to achieve this.
- */
- template <typename... ArgTypes>
- class Tuple : public DerivedValue<std::tuple<ArgTypes...>>,
- private _Tuple<ArgTypes...>{
- protected:
- void update_value(){
- this->value = _Tuple<ArgTypes...>::_get_value();
- }
- std::string _get_name(){
- return "tuple("+_Tuple<ArgTypes...>::_get_name()+")";
- }
- public:
- Tuple(Value<ArgTypes>*... args, const std::string& alias)
- :DerivedValue<std::tuple<ArgTypes...>>("", alias),
- _Tuple<ArgTypes...>(args...) {
- this->set_name(_get_name());
- }
- };
- template<typename> class Apply; // undefined
- /**
- * Applies a function to a tuple of values and returns a value. This will
- * typically be called with a Tuple object as an argument.
- */
- template <typename Ret, typename... ArgTypes>
- class Apply<Ret(ArgTypes...)> : public DerivedValue<Ret>{
- private:
- Function<Ret(ArgTypes...)>& fn;
- Tuple<ArgTypes...>* arg;
- void update_value(){
- auto &tup = arg->get_value();
- this->value = call(fn, tup);
- }
- public:
- Apply(Function<Ret(ArgTypes...)>& fn, Tuple<ArgTypes...>* arg, const std::string& alias)
- :DerivedValue<Ret>("apply("+fn.get_name()+":"+arg->get_name()+")", alias),
- fn(fn), arg(arg){ }
- };
- /**
- * Returns the count of elements in the input vector passing a test function.
- */
- template<typename T>
- class Count : public DerivedValue<int>{
- private:
- Function<bool(T)>& selector;
- Value<std::vector<T> >* v;
- void update_value(){
- value = 0;
- for(auto val : v->get_value()){
- if(selector(val))
- value++;
- }
- }
- public:
- Count(Function<bool(T)>& selector, Value<std::vector<T>>* v, const std::string alias)
- :DerivedValue<int>("count("+selector.get_name()+":"+v->get_name()+")", alias),
- selector(selector), v(v) { }
- };
- /**
- * Returns the elements in a vector that pass a test function.
- */
- template<typename T>
- class Filter : public DerivedValue<std::vector<T>>{
- private:
- Function<bool(T)>& filter;
- Value<std::vector<T> >* v;
- void update_value(){
- this->value.clear();
- for(auto val : v->get_value()){
- if(selector(val))
- this->value.push_back(val);
- }
- }
- public:
- Filter(Function<bool(T)>& filter, Value<std::vector<T>>* v, const std::string alias)
- :DerivedValue<std::vector<T>>("filter("+filter.get_name()+":"+v->get_name()+")", alias),
- filter(filter), v(v) { }
- };
- /**
- * Reduce a Value of type vector<T> to just a T.
- * This is useful functionality to model, for instance, calculating the maximum
- * element of a vector, or a the mean. See child classes for specific
- * implementations.
- */
- template <typename T>
- class Reduce : public DerivedValue<T>{
- private:
- Function<T(std::vector<T>)>& reduce;
- void update_value(){
- this->value = reduce(v->get_value());
- }
- protected:
- Value<std::vector<T> >* v;
- public:
- Reduce(Function<T(std::vector<T>)>& reduce, Value<std::vector<T> >* v, const std::string alias)
- :DerivedValue<T>("reduceWith("+reduce.get_name()+":"+v->get_name()+")", alias),
- reduce(reduce), v(v) { }
- };
- /**
- * Find and return the maximum value of a vector.
- */
- template <typename T>
- class Max : public Reduce<T>{
- public:
- Max(Value<std::vector<T>>* v, const std::string alias)
- :Reduce<T>(GenFunction::register_function<T(std::vector<T>)>("max",
- FUNC(([](std::vector<T> vec){
- return *std::max_element(vec.begin(), vec.end());}))),
- v, alias) { }
- };
- /**
- * Find and return the minimum value of a vector.
- */
- template <typename T>
- class Min : public Reduce<T>{
- public:
- Min(Value<std::vector<T>>* v, const std::string alias)
- :Reduce<T>(GenFunction::register_function<T(std::vector<T>)>("min",
- FUNC(([](std::vector<T> vec){
- return *std::min_element(vec.begin(), vec.end());}))),
- v, alias) { }
- };
- /**
- * Calculate the mean value of a vector.
- */
- template <typename T>
- class Mean : public Reduce<T>{
- public:
- Mean(Value<std::vector<T>>* v, const std::string alias)
- :Reduce<T>(GenFunction::register_function<T(std::vector<T>)>("mean",
- FUNC(([](std::vector<T> vec){
- int n = 0; T sum = 0;
- for (T e : vec){ n++; sum += e; }
- return n>0 ? sum / n : 0; }))),
- v, alias) { }
- };
- /**
- * Calculate the range of the values in a vector
- */
- template <typename T>
- class Range : public Reduce<T>{
- public:
- Range(Value<std::vector<T>>* v, const std::string alias)
- :Reduce<T>(GenFunction::register_function<T(std::vector<T>)>("range",
- FUNC(([](std::vector<T> vec){
- auto minmax = std::minmax_element(vec.begin(), vec.end());
- return (*minmax.second) - (*minmax.first); }))),
- v, alias) { }
- };
- /**
- * Extract the element at a specific index from a vector.
- */
- template <typename T>
- class ElementOf : public Reduce<T>{
- public:
- ElementOf(Value<int>* index, Value<std::vector<T>>* v, const std::string alias)
- :Reduce<T>(GenFunction::register_function<T(std::vector<T>)>("elementOf",
- FUNC(([index](std::vector<T> vec){return vec[index->get_value()];}))),
- v, alias) { }
- };
- /**
- * Similar to Reduce, but returns a pair of a T and an int.
- * This is useful if you need to know where in the vector exists the element
- * being returned.
- */
- template <typename T>
- class ReduceIndex : public DerivedValue<std::pair<T, int> >{
- private:
- Function<std::pair<T,int>(std::vector<T>)>& reduce;
- Value<std::vector<T> >* v;
- void update_value(){
- this->value = reduce(v->get_value());
- }
- public:
- ReduceIndex(Function<std::pair<T,int>(std::vector<T>)>& reduce, Value<std::vector<T> >* v, const std::string alias="")
- :DerivedValue<T>("reduceIndexWith("+reduce.get_name()+":"+v->get_name()+")", alias),
- reduce(reduce), v(v) { }
- };
- /**
- * Find and return the maximum value of a vector and its index.
- */
- template <typename T>
- class MaxIndex : public ReduceIndex<T>{
- public:
- MaxIndex(Value<std::vector<T>>* v, const std::string alias="")
- :ReduceIndex<T>(GenFunction::register_function<T(std::vector<T>)>("maxIndex",
- FUNC(([](std::vector<T> vec){
- auto elptr = std::max_element(vec.begin(), vec.end());
- return std::pair<T,int>(*elptr, int(elptr-vec.begin())); }))),
- v, alias) { }
- };
- /**
- * Find and return the minimum value of a vector and its index.
- */
- template <typename T>
- class MinIndex : public ReduceIndex<T>{
- public:
- MinIndex(Value<std::vector<T>>* v, const std::string alias="")
- :ReduceIndex<T>(GenFunction::register_function<T(std::vector<T>)>("minIndex",
- FUNC(([](std::vector<T> vec){
- auto elptr = std::min_element(vec.begin(), vec.end());
- return std::pair<T,int>(*elptr, int(elptr-vec.begin())); }))),
- v, alias) { }
- };
- /**
- * Find and return the minimum value of a vector and its index.
- */
- template <typename FST, typename SND>
- class CartProduct : public DerivedValue<std::vector<std::tuple<FST,SND>>>{
- private:
- Value<std::vector<FST>>* val1;
- Value<std::vector<SND>>* val2;
- bool self_product;
- void update_value(){
- this->value.clear();
- auto& v1 = val1->get_value();
- auto& v2 = val2->get_value();
- for(int i=0; i<v1.size(); i++){
- int lower_lim = self_product ? i+1 : 0;
- for(int j=lower_lim; j<v2.size(); j++){
- this->value.push_back(std::tuple<FST,SND>(v1[i],v2[j]));
- }
- }
- }
- public:
- CartProduct(Value<std::vector<FST>>* val1, Value<std::vector<SND>>* val2, const std::string alias="")
- :DerivedValue<std::vector<std::tuple<FST,SND>>>("cartProduct("+
- val1->get_name()+","+
- val2->get_name()+")", alias),
- val1(val1),
- val2(val2),
- self_product(val1 == val2) { }
- };
- /**
- * A generic value owning only a function object.
- * All necessary values upon which this value depends must be bound to the
- * function object.
- */
- template <typename T>
- class BoundValue : public DerivedValue<T>{
- protected:
- Function<T()>& f;
- void update_value(){
- this->value = f();
- }
- public:
- BoundValue(Function<T()>& f, const std::string alias="")
- :DerivedValue<T>(f.get_name()+"(<bound>)", alias),
- f(f) { }
- };
- /**
- * A Value of a pointer. The pointer is constant, however the data the pointer
- * points to is variable.
- */
- template <typename T>
- class PointerValue : public DerivedValue<T*>{
- protected:
- void update_value(){ }
- public:
- PointerValue(const std::string& name, T* ptr, const std::string alias="")
- :DerivedValue<T*>(name, alias){
- this->value = ptr;
- }
- };
- /**
- * A Value which always returns the same value, supplied in the constructor.
- */
- template <typename T>
- class ConstantValue : public DerivedValue<T>{
- protected:
- void update_value(){ }
- public:
- ConstantValue(const std::string& name, T const_value, const std::string alias="")
- :DerivedValue<T>("const::"+name, alias),
- Value<T>::value(const_value) { }
- };
- }
- #endif // value_hpp
|