%load_ext autoreload
%autoreload 2
import matplotlib.pyplot as plt
%matplotlib inline
from plotter import StackHist, StackHistWithSignificance
from utils import ResultSet
rs_TTZ = ResultSet("TTZ", "../ichep_data/TTZToLLNuNu_treeProducerSusyMultilepton_tree.root")
rs_TTW = ResultSet("TTW", "../ichep_data/TTWToLNu_treeProducerSusyMultilepton_tree.root")
rs_TTH = ResultSet("TTH", "../ichep_data/TTHnobb_mWCutfix_ext1_treeProducerSusyMultilepton_tree.root")
rs_TTTT = ResultSet("TTTT", "../ichep_data/TTTT_ext_treeProducerSusyMultilepton_tree.root")
def stack(attr, ax, title, cls=StackHist, stack_signal=False, scale = None, **kwargs):
hs = cls(title)
hs.add_mc_background(getattr(rs_TTZ, attr), 'TTZ', lumi=rs_TTZ.lumi, plot_color='r')
hs.add_mc_background(getattr(rs_TTW, attr), 'TTW', lumi=rs_TTW.lumi, plot_color='g')
hs.add_mc_background(getattr(rs_TTH, attr), 'TTH', lumi=rs_TTH.lumi, plot_color='b')
if scale is None:
scale = 1 if stack_signal else 20
hs.set_mc_signal(getattr(rs_TTTT,attr), 'TTTT', lumi=rs_TTTT.lumi, stack=stack_signal, scale=scale, plot_color='k')
hs.luminosity = 40
hs.energy = 13
hs.logy=False
hs.draw(ax, **kwargs)
The main discriminating variables in the analysis are Jet and B-Jet Multiplicities
Below are shown the distributions for the TTTT as well as relevant BG processes. The "baseline" selection for the trilepton channel is:
fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(2,2, figsize=(26,20))
stack('jet_count', ax0, 'Jet Multiplicity', cls=StackHistWithSignificance, high_cut_significance=True)
stack('jet_count_trilepton', ax1, 'Jet Multiplicity', cls=StackHistWithSignificance, high_cut_significance=True)
stack('jet_count_b_jet3', ax2, 'Jet Multiplicity', cls=StackHistWithSignificance, scale=1, high_cut_significance=True)
stack('jet_count_z_mass_veto', ax3, 'Jet Multiplicity', cls=StackHistWithSignificance, scale=1, high_cut_significance=True)
# stack('b_jet_count_base_selection', ax3, 'B-Jet Multiplicity', cls=StackHistWithSignificance, scale=1, high_cut_significance=True)
# stack('b_jet_count', ax1, 'B-Jet Multiplicity', cls=StackHistWithSignificance, high_cut_significance=True)
# stack('lepton_count', ax4, 'Lepton Multiplicity', )
# stack('lepton_count', ax5, 'Lepton Multiplicity', stack_signal=True)
fig, (ax0) = plt.subplots(1,1, figsize=(6,5))
stack('leading_lepton_relIso', ax0, 'Leading Lepton Relative Isolation', stack_signal=False, cls=StackHistWithSignificance)
xs = list(rs_TTH.leading_lepton_relIso_all)
print(len([x for x in xs if x == 0]))
print(len([x for x in xs if x != 0]))
fig, ((ax0, ax1)) = plt.subplots(1,2, figsize=(12,5))
stack('reco_top_mass', ax0, 'Reconstructed Tri-jet Mass', stack_signal=True)
stack('mc_top_mass', ax1, 'Reconstructed MC Tri-jet Mass', stack_signal=True)
fig, ((ax0, ax1)) = plt.subplots(1,2, figsize=(12,5))
stack('leading_jet_pt', ax0, 'Leading Jet $P_t$', cls=StackHistWithSignificance, )
stack('leading_lepton_pt', ax1, 'Leading Lepton $P_t$', cls=StackHistWithSignificance, )
print(rs_TTH.b_jet3_count)
print(rs_TTH.trilepton_count)
print(rs_TTH.z_mass_veto_count)
print(rs_TTH.J4_count)
print(rs_TTH.J5_count)
print(rs_TTH.J6_count)
print('---')
print(rs_TTH.SR4j_count)
print(rs_TTH.SR5j_count)
print(rs_TTH.SR6j_count)
# 'ROOT.vectos' in str(type(rs_TTH.b_jet3_count))