{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "from plotter import StackHist\n", "from utils import ResultSet" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Loading unchanged result file ../data/TTZToLLNuNu_treeProducerSusyMultilepton_tree_result.root\n", "Loading unchanged result file ../data/TTWToLNu_treeProducerSusyMultilepton_tree_result.root\n", "Loading unchanged result file ../data/TTHnobb_mWCutfix_ext1_treeProducerSusyMultilepton_tree_result.root\n", "Loading unchanged result file ../data/TTTT_ext_treeProducerSusyMultilepton_tree_result.root\n" ] } ], "source": [ "rs_TTZ = ResultSet(\"TTZ\", \"../data/TTZToLLNuNu_treeProducerSusyMultilepton_tree.root\")\n", "rs_TTW = ResultSet(\"TTW\", \"../data/TTWToLNu_treeProducerSusyMultilepton_tree.root\")\n", "rs_TTH = ResultSet(\"TTH\", \"../data/TTHnobb_mWCutfix_ext1_treeProducerSusyMultilepton_tree.root\")\n", "rs_TTTT = ResultSet(\"TTTT\", \"../data/TTTT_ext_treeProducerSusyMultilepton_tree.root\")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAIRCAYAAAB09GUsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAASdAAAEnQB3mYfeAAAIABJREFUeJzs3U9sJFl+H/jv6y5ba600yiph2hgYK8hJ3boHEFjVvvow\n5GmxsA5kN7AXn5oE5uQTuX0wxgsd2qyTT4MlG3vQxYtu8uBZ755IHXR1FxMCpvtm5ggyDGEaUFWO\nRjujkab77SEjs5NZmfybTDLJzwcIVGW8F5EvksnMH3/x4hel1hoAAAAAmJc3bnsAAAAAADwsElIA\nAAAAzJWEFAAAAABzJSEFAAAAwFxJSAEAAAAwVxJSAAAAAMyVhBQAAAAAcyUhBQAAAMBcSUgBAAAA\nMFcSUgAAAADMlYQUAAAAAHMlIQUAAADAXD267QEA3KRSykqS1SSptW7f9+cFAFg04jV4mMyQggVR\nSlkppRyWUmqznJRSjpvlVfN454L72iil7I/s67iUsltKaV1hXO1SysYZ7Vtj41674H5Hx7dfSmlf\nYWyDIGMrycpFxl5KaTWv5e5ln+8iz3ud/Z+17Xk/B+6X5vPgQr/vALyulLLWxD6DWONV8/jS8caM\nxnOr3+PiNfEa5xN/zV6ptd72GIBLKKWcJGknWaq1dkfWH6b/Zfr8omd4SinHSZaTrNZaj64wllaS\nV0k6tdan5/R9laSVpFtrXTqnbzvJSfPwwsdzxv7q+BinjX1k/VGtdfUGn/fS+5+27WV+Diy25ndj\nJ8nLJM/8vAGup5Syn2QtyWatde+WxnBnvsfFa9ffv3jt/hF/3RyX7MHi6U1Zv5N+Qmr5EvvqNv1f\nXmUgtdZeKSUX3H6QPFsupazVWg/O6LuTpNOM7a+vMrbzTBt7rbWXpNzEc153/9O2veTPgQXWJKHX\nm7O6z257PAD3wOC7s3tmrxt0x77HxWvX3L947f4Rf90cl+zB/TG43G7/Fp57WpJs3ODM2dSprs0Z\niHaSqVOkm6nQE6eEl1Iuk5BLLj72RXCfjgUAHpq78j0uXrtZ9+lY4FokpOAeaLL1O0m2ZzXdvLnG\nfaepB3DY1JlaG2lfaS75S5K1kfoBr137P6Kb5CBJ+4zaBDv5JhAaH9NGc8niq4wESc1YD5sp18eT\nth3bz7Sx/9FITYndkf7LzWtx3NRYaI3UWXh10ZoJzXav7X+sz1qz71cj+25N2/aMY/k/y+l6Y1sj\n2+w0+66j65m9Qa2Ic34v5jaW2x7DrJQr1LsDmIULxEeXihnOi6ea7XebZb9MqPvZ7GPwnBvNGI4n\nxQAXJF4Try008dfNuJH4q9ZqsVgWaEn/C3zwRT74/+ALf/mS+9pvtl8eW7+Wfk2A9ti6mmRjrG9N\nsn/BcQ/OptUkJxP6LCc5bv6/0fTbmtBn4nMOXo8J6+tgv2eNvdn3znj/9C+F3B30T3KYfgHMjZH1\ndfT1mvS80/bftLWb8W+lP9utNfIatM7adtrPYWT7nQn9D5Os3Pb7+a4uzWu+laQ14TXdGXkftCds\nu9X8Tv5fIz+zrXOeb7DficuE/iuT3gdn7H95yu/MWpLDCevbzfENPl/2x1+Lkb77zefF6GfS6GfU\nyaTf9ymvWW1+p1YmtA/2vdGM79zPHYvFYjlvGfkeP/c7MReIj64ZM4x/j7ebz8aVkXWtZgzDfTTP\nOYjpDgefo4PvikyI3844RvGaeO02fx/FXw8s/rr1N53FYrncMvKhMBoMjX547V5iX68lpJovgmlf\nipO+mC+VkBp73vHk1v7ggzBTApyznnOw34uM+5z9TDrO5TP2MwhGDy/xvOP7P5n0sxtfd4VjeZXk\n1di69mW+TB/iMvIeHf092xj9eaQfrIy/tlvN+uWR9/KrSe/ja47vwgFRvgmeW2PjHAYwU943W81x\nDH4XJ/6ej69vPovGX5eLfEZs5Yw/CtMPlLbG+l/4885isVgmLblgQuoy8dE1Yobxz9Pj8X7T9t98\nL0zaR2vS851xnOK1s/cvXrvBJeKvBxd/uWQP7oFaa7f27+LRS7JRmuvyR6YOD5cL7G4wtXUwFXm/\nWXaTHCV5MYMhb4/9O6gl0K5XuNvfnH0yvqL2C352M+FWxRfRTCceJBXH9715lX2O+ChJa2zK8nam\nTLNn+PMY/K6MFh7dyelaGYPXdq3ZrtX0+aTW2rlD7+Wd9AOH0ZoV3dq/Q8zEW1In+ajW+rw5jr0k\nzzP9hgmvvW+v2GdwufG09/zKSJ/UWp8nea9cvg4JwFVcJT66cszQfBYvp180fHwfnWYfyxNiu8Ox\nvr3048OrXDYkXhshXrtZ4q+HGX9JSMH9MvgAflZK2UhztmVk+ckF9jEIWHZrrau11vVm2WweX/cL\nN7V/p4pBbYKNZvXUWgQLoper36HnJv+gHnyBjL62z+7Ql/VdtJ6xQKH50m01fwQkGQb53STvNqsG\nvzs3Wqy0CcC20/9DZOusRHMz7rU6VluunnHXpCbB/XxC08T3zPi+r9Gnl/7nwtr4MTVBamcsqEv6\nQenUorsAMzTL+OgiMcN5scFg+ycXeL6r3k1ZvHaaeO1mib8eYPwlIQX3y+BD5EX6H16rY8v3LrCP\nwZf00sxHd9rwDi6DDPuCf+m20/8wv4rBa/7umb2uoPkC2UuyMijwmDPuiPPQNUVDJ70+7UwOdHrp\nB+rtJB83646bIqSnAtemoOlJU5z08KpFLmutB80fP6U5i3ZWAPZ+pgQyF9WMsz2LZHQTwA2K8x5P\nOLs2eO3fG1u/mX7wM+4o/fe2IufAjWk+B2cZH10kZhg835lJkCZpdJPEa98Qr90Q8dfrHkr8JSEF\n90TzgfAsSa+Z5tmttR6NLa9N+55g0GfjJv/IawKovfSTaH+ay59tO/Vl0oz1Vu6kMTK9etIH9kUM\nvrDOPNtyDYMzGNtJ1i9ytuQhal77351wFi6ZfqnDy/TP3HWTfNCse1prfTz2+/Z++n9UrKZ/BvBZ\nLnCHoRlYyRXPBA/uIJSmeGiZfqeli+7vMOlf1tAEV58k+dPR93zzR043I9PGm/b2pM+vkXW3fhcd\n4H5q/ijczozio4vGDM3nWy/T/+h7lpHLaG6KeO0U8doNEH+d9tDiLwkpuAeaYOlPm4cXmQU1bpjh\nbz7YB8HGcfOh2GrO1myNTNketdL0O+uWtO18M4NrYPA83QkfdoMzkL87YV+dfDNddrn5oP44Tf2G\nSwYJFxn7qJ3Sv43s8Na+zXE8PedMyVTNdoMvgNHXfHDr4Isez8RjaX6mnfSLI17kWvKHaidXC1Iv\n8nN/0ZxN6zbTtT/I67UibkI7/QKsV3HUnAlcSj8I37/qeJvtVnL6rPRB+p8J4/vcTf/3exCEvpfz\nzxLfm1sqA3N33iVvm+nfqeoq8dFlY4bx7/HBH9r7o52a9u6UmRPTYoaLXNqXiNemEq/dGPHXaQ8q\n/pKQggXSBDuDKZbHzfTTk/QDlaMk//yCs6DGnaot0Fy/vJp+pvzj9GtP7aQfiIyfrRl8MX+cCV8M\nTTBwmP4H36D45+B5BtOTR4tltkop++nfwSHpn4kc/yBeT/8Leyf9RNy7tdb1kfb95ot+rdlX0v+A\n3R+bonpq7Bfon+Z5t9OvyXWc5EnzpTE8CzJtP2ftv3ldR1/zV82xtWutFxnbmT+HfPNF/yDOtl1W\n81oenxGk9jI9yL/IGbDxoGRwlvWmLzW78v5HX4ta6+B3dH1K9/OsNv/uNNPFd9J/zx7k9ffreHHN\n9SSfnrHvXib/IQRwpiauGsw+2G/iqmF8VUqp6ccj3eTS8VFygZhhxGvf480f0E+bsZ6Ub4qo92q/\nMPLgOEaLPn84Ei+Mak2Ja4avhXhNvDZv4q/XPbj4q96B2ztaLJbbWTLh9qCWqa/V4DbCM7197BzH\nv5IJt6q2DF+f4+bnO2k5yTe3025N2G5j7D3SHuvz2m2H881tuNs3dUzTnnusfSNjtx0eP8axfZ37\nHpr0uZL+HyP1vG3H95H+mbczb1mcCbckt1gslttcFj1mWORl0V/7hxavib9Oj+2Mfd3b+MsMKXjY\nBnURuP+mFSWk73vpX3YwWAa/F0vpn10a3M772dh2yzn77NE0g7uW3HQx2m4uX4B3Z/yyg+ZxK1cv\nsPpZs5+L1kHYbZ5v/4LPedOvIwDMw0OL18Rf33iQ8ZeEFDwwzVTkwZTNTn0gBRMfssH0+XrFmgkP\nQa21V/v1BbpNkDJ4rV426wa3xB29XGEjyd7I6zqozzE+TbuV5P3BNfnNv5u5+vTryzjK2df3T5pS\nfpxv7lgzsJN+gdWLBB6v1Smp/ctOuhmrgzCo7zGlf9I/gzn1LjUjl0G8mNYHABbBQ4zXxF+nPMj4\n69F1dwAsnF76Zxl26zfXJXNxC1GrpvmS2Un/y20731xDzhmaL9j3c7qmyGHtF8Rcb5K5h+l/ufdq\nU1C2OfM0uOZ+p5SyM/JFfpT+791JKaWbpljlnA7pk3xT32OoOc7NNLf3bY6p03wmHCVZLaUcp3+c\n3fSnip8ZDI3sc7l5vJ/+58zgdXia/ntyt5TypHme3TMC70EQdZaV9F/PBxO8AwtlIWKGe2ohXnvx\nWp/46+HGX6W5/g+AKZrZZCvpf9D30p8ivH2X/whuzoIMvrg3zzrLwf3WBDYfjZz1ujdK/6YO3t/A\nnbGIMcN9sYivvXjt/hJ/XXBfElIAcH81Z84+riN3ZLoPmiB+s56+YxMAwK0Tf11wfxJSAHC/NfUW\nWrV/y/J7oZSyLxkFANxV4q8L7E9CCgDuv1LK2n2ZNt6cdeze5cswAADEX+fs874npEopv5PkXyb5\nb0n+/paHAwDM3j9O8j8l+bNa689uezD0icEA4N67Vgz2EO6y9y+T/Oi2BwEA3Lh/leT/vu1BMCQG\nA4CH4Uox2ENISP23JPlP/+k/5Q/+4A9ueywAwIz91//6X/NHf/RHSfOdz50hBgOAe+y6MdhDSEj9\nfZL8wR/8Qd5+++3bHgsAcHNcFna3iMEA4GG4Ugz2xqxHAQAAAABnkZBKcnR0lPX19SwtLaWUkqdP\nn2Z7ezu93uni8Y8fP04pJaWUPH78+LX9DNomtR8cHOTp06fDfSwtLWV9fT3dbvdGjw0A4K4SgwHA\nw/XgE1Lb29tZXV3NwcHBMDDpdDp5/vx5Hj9+nE6nM3G7Xq93KpCZ1m/wHOvr6+l0OsMAq9vt5uDg\nIEtLSzk6OprhEQEA3H1iMAB42K6UkCqltEsph6WUWkp5VUrZL6W0Rtr3m7bxZXmkz0YpZafpe1hK\naY89x5nts3B0dJTnz58nSZaXl3N4eJiTk5Ps7++n1eofzvr6+pnbD7x48WJqv8FzbGxs5OTkJLXW\nHB8fp93uH9Lm5ua1jwUAYFGIwQCAqxY1P07yUZLtJM+S7DbrRyOH7QnbdZN+sinJ01rrZvN4p9nn\n44u0z8ogCGm32zk+Ph6uHwQpg+ncnU4ny8vDXFqWl5fT6XRObXN4eHiqbWD0/5ubm8N9Ly8vZ3d3\nNzs7O7M8JHjQvv766/z0pz/Nr371q3z99de3PRzgGkop+Uf/6B/lW9/6Vn77t387pZTbHhIzJAaD\n+6PWmp///Of5m7/5m/zDP/xDaq23PSTgGuYZg106IdXMVPqo1vq8WdUppSwlWRvtN9I+yU6S7408\n/ijJVillrdZ6cIH2mRhM9550dmxtbS2vXr1KkuGZuoFnz56l0+mcOjs3+H+73T4VAA2Cn6QfXG1v\nb2dlZSXtdjsrKytZWVmZ1eHAg/b111/nL//yL/PLX/4yb775Zt58801/wMKCqrXmq6++yt/93d/l\n5z//eX7zN38z/+yf/bM8evQQbg58Oc1JvNZo3NWsW0rSTtJKsllr7c6qfRbEYHA//PrXv85//+//\nPb/4xS+SJI8ePcobb7whBoMFNe8Y7NJ7bQKSScmm0YvwWxPakyTNZXutWuswYqi19kop3STvNv9O\nbU8yk4TUaMAyeuZt1HgQNGpwFm5Qj6DX62VlZSVPnjx5bR+7u7vZ3NxMt9s9FXgtLy/n/fffz9bW\n1nUOBUjy05/+NL/85S/z5MmTvPXWWwIhuAd+/etf58svv8zPfvazvHr1Kt/+9rdve0h3RillJf0T\neB/VWvdG1l9rFvo8ZqmLweD+ePXqVX7xi1/kd37nd/LWW285cQD3xLxisGsXNW9mTLUHgcvI+o1S\nyklTO+p4pH5UO0nvtR3117Uv0H4nDM6qvXjxYnhmblpQtbGxkVevXmV/fz8bGxvDfp1OJ9vb21la\nWprPoOEe+9WvfpU333xTMgrukUePHuU73/lO3nzzzfzt3/7tbQ/nzmiSRjtJvjdh5vhOvimlkPRn\nmbdKKWszar91YjC4O/72b/82b775Zr7zne9IRsE9Mq8Y7MoJqVLKWinlMMlhkvaEQGUp/ZpSm+kn\nko6bwufTkkov059ZdV77WWN6q5Ty9ujSjOM1o4HLtNv+Hhwc5ODg4LVbDyfJ6upqkn7dgs8+++zU\nuklarVbW1tayu7ub4+PjvHr1ali7YHC3F+Dqvv76a5fpwT1USsmbb76pJkmjOcG3m2S91tqb0Pba\nLPP0a3i+e932WR2DGAzuj1prHj16JP6Ce2geMdh1Zkgd1VpXa61L6V+ut99MH0/6QdJ2rbXTTCMf\n1IPaOGefk2ZGXab9+0k+H1t+NK3zoLbApKKWBwcHWV9fz/r6el6+fPla+7Nnz5L06xYMzs4N1o06\nOjrK0tJSlpaWTgVVrVbr1DTxaQEZcHGCIbif/G6fspNkb0pNp+vOQp/bLHUxGADcfTcdg105ITV6\nVq7WOrij3vp4W/O4k34w87vNv9NmOnUv0H6WHyZ5Z2z5V9M67+72Z6R3u92srq4O6xEcHBzkgw8+\nSNIPmEaLYg60Wq1h8cxOp5N2uz2x3kG73U632023280HH3wwDHq63W62t7+5EaHCmgDAWZqZ5ivp\nzzrfaUojHDeX8CXXn4U+l1nqiRgMALhCQqoJhibp5ewZTC+TfJYmqTRhP0+SnFygfapa65e11i9G\nl7O2WVlZycZGP4Y7OjrK06dP8/jx46yvrw/PpA1uJTxt+0n/H9Vut4dn/w4ODrK0tJRSSpaWlvL8\neb82/Nra2tTaBwAAjeFM9PRLJqymHzftXqDG03Vnoc90lroYDAC4SuW5nVLK9ugsqCZ51Eo/INoa\nvfXwSHty+k58z8YeLyf59BLtM7G7u5v19fXs7OzkxYsX6fV6abfbWVtby4cffnjmXV5WV1ezt7c3\n/P80W1tbWV5ePvUcrVYrz549y+bmZtbW7kydUAAu69/9zm2PIPl3P7v0Juvr6+l0OsPvucGdzwZ/\nnA+SAoM7mp3Xb3NzczjrZGNjI9vb26dmtywtLeXk5JtzRL1eLx999FH29vby7Nmz7O7uTpwNwymD\nF2h7pM7TeinlVZL3009SXWcW+nVnqe+PrVvKGUkpMRgAV3YX4q9EDHZN5bIFqppp4au11vWRdbtJ\nDmutB80ZuvZoUqqUsp/+bYk7I49btdbVkX2O3mL4zPZLjvftJJ9//vnnefvtty+7ObAgBpdi+IOW\nubsLAdEVg6H9/W/yB6urq3nx4kVevXp1qk+SC/Xb39/P5uZm9vb2Xit+eXR0lNXV1RweHr42m2Vp\naSnHx8dnJh/O+/3+4osv8s477yTJO83s6HupibH2kzweOzE4mEq0k35Sarz9OP1C6N3rtDd1QS8z\nXjEY3HPiL27NXYi/EjHYNWOwq8yQOkqy2gQn3WbZGRTXbJJSh6WUzSSd9C/V+2Cs5tR6KWW3CaC6\nSXqjyabz2gEeilmfQZl1v9GzLZfV6XTywQcfDJ/nvffeG9aVGdjb28vJyUm63W56vZ5ZNDN01qyS\ny/QZ7TeYtdLpdE5dBjX4ue7u7p4KhgazVc4KhDhlMEupnX6MNfAkySdJXjSPrzsLfS6z1AHuMjGY\nGOymiMG+cemEVJN4Wj+nz7mv3nkJJgkogL7RgGNwZuT4+Hi4bnAG5bb6XUWv18vTp0+ztbWVDz/8\nMJ988kn29vby8uXL4Zmgvb29HB8fD79It7e38/Tp01Nnhbi6Qf2e6/YZ7TcIdI6Ojk4FQ71eLxsb\nG8NLrAaOjo7y/vvvX3TID16ttVNKOUqy2SwppSxnZGZ6KeUgyXaahFIzy3xvcGLwuu0AD4kYTAx2\nE8Rg37jyXfYAuHkXPYNyW/2uqtvtZmtrKzs7O1lbW8v+/n7W1tZycHAw7LO9vZ3NzW/OTXz44YfD\nu3BxNw3OtH322WfDdXt7e1lfXx/+LEd/fp988ok7nF3SSDmD/VLKTvqJqX8+0r6epNvMVt9NsjQ+\nC/067QAPhRhMDLZIFjUGu8olewAL49/8m3+TP//zP7/tYQz94R/+Yf7Df/gPF+5/E2dQbqrfYOrv\nNN1udzjVu9Vq5cMPPzzVvrq6moODg/R6veH08NEzPINbvX/22WcKEd9hKysrOTr65mqv/f394d3S\nWq1WPvnkk+HPb3xaORdz3VnmZqkD83CXYrDLxl+JGEwMtngWMQaTkALutT//8z/Pn/3Zn932MB6E\nly9fDgsrjgdFgzoEg1uwT6pBMLjDVqvVSrfbnRhYDdq4u0aD2pcvX576WW9sbOT58+fDtrsQCAFw\nM8Rg8yMGI1nMGExCCrjX/vAP//C2h3DKXRvPLLXb7eFt3EcDovFAaJpPPvlk2GdawPPkyZNhMU/u\npmfPniXp1yb47LPPTk3539zczPPnz/Ppp/362Ne55ACAu+0uxTx3aSw3QQxGspgxmITUDTo4OMjK\nysqtV66Hh+yy07O5nna7nZ2dnWFA9Omnn14oEHr+/HmePXt2oWngPlPvtsEZt8PDw7x48eLUz77d\nbqfdbg+D5Y8//vi2hsk9JwaD2ycGmy8xGIsYgylqfgOOjo6yurqa9fV1v7TAg7O8vJydnZ08ffo0\nx8fH5wZCnU4nh4eHp2433Gq1pp6Fc8vhu295eTl7e3sT796yubmZo6OjqZcEwHWIwYCHTAzGosVg\nDzoh1ev1sr29ncePH+fx48fDuwk8ffo0q6urV75GdmVlJaurqxOvy1xaWjpVaOyqZrUfgJtwdHSU\nlZWVYWHMaQafw4PbDA8MAp7xbV++fJmlpaXZD5i8fPlyZv0Gd22ZVJx1cAZ2MK2ch0kMBnAzxGCL\n5yHHYA86IdVqtbKzs5MnT55kY2MjOzs72d3dzfHxcbrd7qlrLi/rs88+e+0HPSgWd903wKz2A3AT\n9vb28td//dfZ3d0dTh2fFhBNK8A5+Hx78eLFqfWdTifvvffezQz8gep0Otnc3Eyn00mv18v6+vrE\nP7Yv2i9J3n333SwvL088+zaYMr6+vj7zY2FxiMEAZk8MtljEYEmptd72GG5UKeXtJJ9//vnnefvt\nt6f1yf7+/qnrZtfX19PtdnN8fHyl511aWsr29vaFb90JXM/gbPp9n0r89OnTdLvdvHr16k72m1Q8\ns9PpDM/AjX45rq6upt1uv3a2rd1uZ21tbRhEDW5Xu7e3l+Pj41PTynkYzvv9/uKLL/LOO+8kyTu1\n1i/mNzLOIgaD+++hxF+JGEwM9jDdeAxWa73XS5K3k9TPP/+8TnJyclKT1JOTk1Pr2+123draqrXW\nenx8XJeXl+vu7m599epVXV5eroeHh7XWWl+9elW3trbq8vJyXVlZGW4/vs9Xr17VjY2NurGxceq5\nV1ZW6u7ubq211sPDw9put+vOzs5wm7W1tdputy+1n5OTk7q2tlZbrdapYzo+Ph6uX15eHj7PtOPb\n3d099dyjY4S75uTk5LXf4/vk+Pi4bmxs1CQ1SV1bWxt+Dt2FfoO+g8/NafsZGN3n+LK8vHyq38rK\nSt3Y2Ji6b+6/836/P//888H75+16B2IPixhMDMZDcd/jr1rFYGKwh+2mY7BbD1ZuejkvGNrf36/9\nvNw3NjY2hr+Mx8fHdX9/v7Zarbq/v1/X1tbq8vJyPTk5GQYXtfaDlEEAdHx8fGqfJycndX9//1Sg\nc3x8XA8PD2uSenh4WHd2durh4eHweQbByNra2jDIush+Bvva2to6FQwdHh4Ox1prP9jb39+fenx/\n/Md/XHd3dye+NqNBH9wVDyEggodKQmoxFzFYnxiM+0z8BfebhNQNB0ODM2uHh4d1a2urbmxsDM9y\njUpSd3Z2Tv0w2u328PHOzs4w2Njd3T2VXR5otVqv/TAH+3316tXw8e7ubj0+Pq611rqysjIMfM7b\nzyAYGhzXePAz2GYQuA2ec9rxjQd1g+ee9PrAbRMQwf0lIbWYixjs9bGKwbhvxF9wv910DPbo4hf3\n3U+dTifPnj3LysrKsCL9uNHrJgfXTg6KiHW73RwcHKTVag3vUHB4ePjavjqdznAf4+sGRcdGC5MN\n7g7z4sWL164DnrSfVquVbrc7rJdwdHQ0LAg6aB9s8+mnn6bdbg+vI550fEm/iv/otcZ7e3vp9XqK\n2QEA1yYGE4MB8LA9+ITUixcvsrq6emafQTAxWnDz8PBwGDxMCnzef//9U+sGt98cf+7l5eXh+sHz\nDAKa0WDpvP0kp2/t2Ol0hv12d3dPbbOzs3Pq8aTjS/p3knny5Mmp7aZV7AcAuAwxmBgMgIftjdse\nwG3q9Xrp9Xqngo1JDg8PXzsj1e12s7y8/Fq1+V6vN2wb9cknn7wWdB0eHp4Kmj777LNTzzMp8Jm2\nn9FA6Ojo6NTZuBcvXuTdd99NkhwcHKTdbp/ax6TjS06fnRucgRwP8gAALksMNv34EjEYAA/Dg05I\nDc5qPXv27Mx+R0dHE8/gjU7vPjg4SKfTGe6z1+udah+cadvb2zu1/fhZsvEg5cmTJ8Np2mftZxDs\nDPq02+3hmLrdbrrdbp4/f561tbUcHR3l5cuXw/FNO75BYPf8+fMsLy+n0+m8dgYPAOCyxGBiMAB4\nsAmpvb29bG9vJ0k++uijHBwcTOw37Wzbhx9+mF6vl6WlpWxubmZlZSXLy8vp9Xppt9vpdrvDQKfX\n66XVaqXX6w3PonW73Tx58mS4316vl5cvX54Kjl6+fJmXL1/mvffeG24/bT+j2/31X/91kn49guXl\n5Tx79iyMcyi2AAAgAElEQVQnJyfZ2tpKkuEZt5WVlanHl/SnqQ/2PTiu8bORAACXIQYTgwFAkpTa\nvwvKvVVKeTvJ559//nnefvvt2x7Owtrc3MzS0tIwoIK7ZrQwLHC/nPf7/cUXX+Sdd95JkndqrV/M\nb2ScRQw2G2Iw7jLxF9xvNx2DPfii5lzMp59+mp/85Ce3PQwAgAdFDAbAffVgL9njbINMaNKvzfDh\nhx+6swsAwA0TgwHwUEhI8Zper5enT58OHx8eHpomDgBww8RgADwkLtnjNa1WK++9916ePn2a999/\nP7u7u7c9JLiW3//f/t/bHkKS5C/+/f986W3W19fT6XSGZ8cHd3kaLcY7eHyRficnJ1lfX8/R0VHa\n7XaePHly6vkGd37a2dnxR9AFffdPvnvbQ8iP//WPL73NrN9bOzs7+eSTT4a3qN/Y2Dg1s6PT6WR3\nd3d4h7KNjY1sbm5OLOgMD5UYjPvmLsRgV4m/EjHYXXcX4q9EDHZdElJMJACCu+Pk5GT4/9XV1bx4\n8SLHx8fDdevr65fq9+TJk7x69eq15+l0Onn69GmWl5cFQg/ELN9ba2trWVtbSyklKysr2dnZOfVc\ny8vL2d3dHQbcvmdgMr8bcHeIwbgpYrA+CSmAO2x1dXUmfUb7jV4OMtDr9fK9730vrVYr+/v7lxsk\nC+km3lsD42d9R6mFA8AiEINxU8Rg35CQArjDNjY2ZtJntN+k/h988EF6vV729/fduvmBuIn3FgDc\nF2IwbooY7BuKmgM8cHt7ezk4OMjW1lbW1tZuezgAAA+CGIyHzgwpgAes0+kMixqOX28OV/Xpp5/m\nxYsXE9s6nc6dKKIJALdJDMZNWLQYTEIK4AFbX19Pq9XKn/7pn972ULhH3nvvvakFMyfVzwCAh0YM\nxk1YtBhMQgrggVpfX0+3283h4eGdLHIIAHAficGgTw0pgAdotGbBysrKbQ8HAOBBEIPBNySkAB6Y\nbrd7bs2Czc3NOY8KAOB+E4PBaS7ZA1ggL1++vFa/Xq+X1dXVM2sWdDod08cfoOu+ty7ap9frXXhM\nAHBXiMG4KQ85BjNDCmABDO7E0ul00uv1sr6+nqOjo0v3++CDD9LtdpMk3/ve9/L06dPhsrS0lMeP\nH9/JgofcnFm9tw4ODrK6upokOTo6yubm5vC9Nrp9t9sdniHudDo3f4AAcA1iMG6KGCwptdbbHsON\nKqW8neTzzz//PG+//fZtDwe4IYMP3Xa7fcsjAWbtvN/vL774Iu+8806SvFNr/WJ+I+MsYjC4/8Rf\ncL/ddAxmhhQAAAAAcyUhBQAAAMBcSUgBAAAAMFcSUgAAAADMlYQUAAAAAHMlIQUAAADAXElIAfdG\nrfW2hwDcAL/bAADzd9MxmIQUcC+88cYb+eqrr/zhCvdMrTVfffVVSim3PRQAxpRS8utf/1r8BffQ\nPGIwCSngXviN3/iNfPXVV/nyyy8FRXBP/PrXv85f/dVf5auvvspv/dZv3fZwABjzW7/1W/nqq6/y\nV3/1V/n1r39928MBZmReMdijG9szwBz903/6T/OrX/0qL1++zM9+9rO8+eabZlTAgqq15uuvvx7+\ncfObv/mbefz48S2PCoBxjx8/zi9+8Yv87Gc/y89+9rM8evQob7zxhhgMFtS8YzAJKeBeeOONN/J7\nv/d7+elPf5pf/epX+frrr297SMAVlVLy6NGj/JN/8k/yrW99K7/927/tjxuAO+jRo0f5vd/7vfz8\n5z/P3/zN3+Qf/uEfzFSHBTbvGExCCrg33njjjXznO9+57WEAADwYpZR861vfyre+9a3bHgqwYNSQ\nAgAAAGCuJKQAAAAAmCsJKQAAAADmSkIKAAAAgLm6UlHzUko7yW6SlSS9JEdJPqi19kb6bCRZStJO\n0kqyWWvtzqodAAAAgMV01RlSx0kOkzxNsp1kLcnHg8YmmfS01rpda11P0mm2mUk7AAAAAIvr0gmp\nZnbUR7XW57XWTq11L8nzJMsj3XbSn0E18FGSVillbUbtAAAAACyoSyekaq3dWuvzCU1HSVJKWU7S\nqrV2RrbpJekmefe67ZcdLwAAAAB3y5VqSI1qZky1m0vrkn7Np96Err2m7brtAAAAACywKyekmsvn\nNtMkkEopa7XWg0xPGr1Mvzj5ddvPGtNbSb49tnrprG0AAAAAmK/rzJA6ahJQKaXsJNkvpayes82k\nmU+zbP9+kh+c04ck3/2T7972EK7kx//6x7c9BAAAZmhR49LLEscCnHbVu+wN6joN/r/d/Hc9/aTR\ntJlM3Rm0n+WHSd4ZW/7VOdsAAAAAMEeXniFVSmmNJqNG9JqlO6XfkyQnM2ifqtb6ZZIvx8Z7kcMC\nAAAAYE6uMkNqp5RyagZT87iVZDfJi2b1s7HtlpN8OoN2AAAAABbYVRJSx0k+Hlu3k2S91tptZjUd\nJBlcxpdSykaSvVpr77rtVxgvAAAAAHfIVYqaHyVZLaUcp395XTfJTq11WN+p1rpeStktpRw27b1a\n6+as2gEAAABYXJdOSDWJp/UL9DszgXTddgCAh6aUsp9kbULT01prp+mzkWQpSTv9kgqboycOr9sO\nADALV5khBQDA7dmesG5wU5iN9JNTm83jnfTLLTyeRTsAwKxISAEALJBa6/MzmneSfG/k8UdJtkop\na7XWgxm0AwDMxFWKmgMAcDta0xpKKctJWoNL95KkuSFMN8m7122f+ZEAAA+ahBQAwAIppWyUUk5K\nKbWUctwkkpJ+zadJdyTuNW3XbQcAmBmX7AEALJal9G8w8yz9S+yOSymPMz1p9DL9mVXXbZ+qlPJW\nkm9PGCcAwEQSUgAAi2O9uYwuSTqllBfpFx3fOGe7STOfZtn+/SQ/OKcPAMCQhBQAwIIYSUYNHndK\nKb0kv5vkJNNnMnXTTypdp/0sP0yyP7ZuKcmPztkOAHigJKQAABbbyySfpZnFVEppjSWunqSfrOpe\ns32qWuuXSb4cXVdKudLBAAAPg6LmAAALoJSyNWHdYEbTUZIXzf+fjXVbTvLpDNoBAGZGQgoAYDF0\nJySlPk5TV6qZ1XSQZHvQWErZSLI3i/YbOyoA4EFyyR4AwAKotR6UUg5LKZtJOulfqvfBaLKo1rpe\nStktpRymqQtVa92cVTsAwKxISAEALIha6+oF+pyZQLpuOwDALLhkDwAAAIC5kpACAAAAYK4kpAAA\nAACYKwkpAAAAAOZKQgoAAACAuZKQAgAAAGCuJKQAAAAAmCsJKQAAAADmSkIKAAAAgLmSkAIAAABg\nriSkAAAAAJgrCSkAAAAA5kpCCgAAAIC5kpACAAAAYK4kpAAAAACYKwkpAAAAAOZKQgoAAACAuZKQ\nAgAAAGCuJKQAAAAAmCsJKQAAAADmSkIKAAAAgLmSkAIAAABgriSkAAAAAJgrCSkAAAAA5kpCCgAA\nAIC5kpACAAAAYK4kpAAAAACYKwkpAAAAAOZKQgoAAACAuZKQAgAAAGCuJKQAAAAAmCsJKQAAAADm\nSkIKAAAAgLmSkAIAAABgriSkAAAAAJgrCSkAAAAA5kpCCgAAAIC5kpACAAAAYK6ulJAqpSyXUo5L\nKbWU8qqUsjvWvt+0jS/LI302Sik7Td/DUkp7bB9ntgMAAACwmB5ddoNSSivJcZLnST5K8n6SjVLK\nk1rr+kjX7Qmbd5t9bCR5WmvdbB7vNPt8fJF2AAAAABbXpRNSSdpJntdaBwmng1LKfpK10U611udn\n7GMnyfdGHn+UZKuUslZrPbhAOwAAAAAL6iqX7PXSTxCNOkyGs6eSpJUpmsv2WrXWzmBdrbWX/uyp\nd89rv8J4AQAAALhDLp2QqrV2mwTRqFaSU+ubGlAnTe2o45H6Ue30k1rjek3bee0AAAAALLCrXLI3\nyft5vWbUUpL1JM/SvwTvuJTyONOTSi/TT2yd1z5VKeWtJN+eMA4AAAAA7ohrJ6RKKVtJXozVdlof\nmS3VKaW8SL8o+cY5u5s0M+oy7d9P8oNz+gAAAABwi66VkGouw1utta6Orh+/pK/W2iml9JL8bpKT\nTJ/p1E0/6XRW+1l+mGR/bN1Skh+dsx0AAAAAc3LlhFRTwHwn/cvyLuJlks/SzHIqpbTGEldP0k9W\ndc9pn6rW+mWSL8fGecHhAQAAADAPV7nL3sB+Tl+al2R4CV/G1g1mPB0ledH8/9lYt+Ukn16gHQAA\nAIAFdqUZUqWUw/RnMm2MzUDqJumWUrZqrc9H1n+ckeRVKeUg/SLoR83jjSR7F20HAAAAYHFdOiFV\nStlNsjKluVNrfVpKOSylbCbppH+p3gejyaRa63opZXcksdWrtW5etB0AAACAxXXphFSTGDozOTRe\n5PyM/Vy5HQAAAIDFdJ0aUgAAAABwaRJSAAAAAMyVhBQAAAAAcyUhBQAAAMBcSUgBAAAAMFcSUgAA\nAADMlYQUAAAAAHMlIQUAAADAXElIAQAAADBXElIAAAAAzNWj2x4AAACXV0ppJdlIsldr7Y2s30iy\nlKSdpJVks9banVU7AMAsmCEFALCYPk6yk+TJYEWTTHpaa92uta4n6SQ5nlU7AMCsSEgBACyYUspK\n+rOXkuTlSNNOkt2Rxx8laZVS1mbUDgAwExJSAACLZz2nE0cppSwnadVaO4N1zaV83STvXrf9Jg8G\nAHh41JACAFggpZSt9JNR7bGmdpLe61uk17Rdt/2sMb2V5Ntjq5fO2gYAeNgkpAAAFkRTyPx3a62d\nUko7Gc5iSqYnjV6mf3nfddvP8v0kPzinDwDAkIQUAMDi2EmyfYXtJs18mmX7D5Psj61bSvKjc7YD\nAB4oCSkAgAXQ1Hg6HpkRNa6X6TOZujNon6rW+mWSL8fGe9YmAMADJyH1QP34J39520MAAC7n4yTL\npZTxYuY1/YTRZvO4NZa0epLkpOlznXYAgJmRkAIAWAzfSz85NLCW/iV8g+LhL5t/nyU5Gum3nOTT\nkcfXbQcAuLY3bnsAAACcr9baq7V2B0u+qev0slnXS3KQkRpTpZSNJHvNttdqv/EDBAAeFDOkAAAW\nSFNL6v30Z0glyX4p5bDW+rzWul5K2S2lHKapC1Vr3Rxse912AIBZkZACAFggtdZOkk6m3G3vvATS\nddsBAGbBJXsAAAAAzJWEFAAAAABzJSEFAAAAwFypIQUAANyaH//kL297CADcAjOkAAAAAJgrCSkA\nAAAA5kpCCgAAAIC5kpACAAAAYK4kpAAAAACYKwkpAAAAAOZKQgoAAACAuZKQAgAAAGCuHt32AOAy\nvvsn373tIVzJj//1j297CAAAAHBnmCEFAAAAwFxJSAEAAAAwVxJSAAAAAMyVhBQAAAAAcyUhBQAA\nAMBcSUgBAAAAMFcSUgAAAADMlYQUAAAAAHMlIQUAAADAXElIAQAAADBXElIAAAAAzJWEFAAAAABz\nJSEFAAAAwFxJSAEAAAAwV4+uslEpZTnJx0mWk/SSfFpr3Rzrs5FkKUk7SSvJZq21O6t2AAAAABbT\npWdIlVJaSY6THCVZb/7dKKXsj/TZSPK01rpda11P0mm2mUk7AAAAAIvrKpfstZM8b5JFB03C6CDJ\n2kifnSS7I48/StIqpazNqB0AAACABXWVhFQv/QTRqMOkP3uquZyvVWvtDBprrb0k3STvXrf9CuMF\nAAAA4A65dA2pKXWcWkm6tdZeKaWdftJqXC/92VXXbQcAAABggV2pqPkE7yfZbv4/LWn0Mv3E1XXb\npyqlvJXk22Orl87aBgAAAID5unZCqpSyleRFrfXgAt0nzXyaZfv3k/zgAuMAAAAA4JZcKyHV1Hta\nrbWujqzuZfpMpu4M2s/ywyT7Y+uWkvzonO0AAAAAmJMrJ6RKKa3074a3PtbUHbQ3xcgHniQ5mUH7\nVLXWL5N8OTbOix4SAAAAAHNwlbvsDewnWR9LGiXJi+bfZ2Prl5N8OoN2AAAAABbYlWZIlVIO05/J\ntDE2A6lbaz0opRykX+T8qOm/kWRvkLy6bjsAAAAAi+vSCalSym6SlSnNnSQHtdb1UsruSOKqV2vd\nHHS6bjsAAAAAi+vSCakmMXRucui8BNJ12wEAAABYTNepIQUAAAAAlyYhBQAAAMBcSUgBAAAAMFcS\nUgAAAADMlYQUAAAAAHMlIQUAAADAXElIAQAAADBXElIAAAAAzJWEFAAAAABzJSEFAAAAwFxJSAEA\nAAAwVxJSAAAAAMyVhBQAAAAAcyUhBQAAAMBcSUgBAAAAMFcSUgAAAADMlYQUAAAAAHMlIQUAAADA\nXElIAQAAADBXElIAAAAAzNWj2x4AAAAXU0ppJ9lNspKkl+QoyQe11t5In40kS0naSVpJNmut3Vm1\nAwDMghlSAACL4zjJYZKnSbaTrCX5eNDYJJOe1lq3a63rSTrNNjNpBwCYFQkpAIAF0MyO+qjW+rzW\n2qm17iV5nmR5pNtO+jOoBj5K0iqlrM2oHQBgJiSkAAAWQK21W2t9PqHpKElKKctJWrXWzsg2vSTd\nJO9et/0mjgkAeLjUkAIAWEDNjKl2c2ld0q/51JvQtde0Xbf9rLG8leTbY6uXztoGAHjYJKQAABZI\nc/ncZpoEUillrdZ6kOlJo5fpFye/bvtZvp/kB+f0AQAYkpACAFgsR00CKqWUnST7pZTVc7aZNPNp\nlu0/TLI/tm4pyY/O2Q4AeKAkpAAAFkhT12nw/+1SylaS9fTvhjdtJlM3/aTSddrPGtOXSb4cXVdK\nOWsTAOCBU9QcAGABlFKmJYt6zdKd0u9JkpMZtAMAzIyEFADAYtgZTxY1j1tJdpO8aFY/G9tuOcmn\nM2gHAJgZCSkAgMVwnOTjsXU7SdZrrd3mUr6DJNuDxlLKRpK9Wmvvuu03dVAAwMOkhhQAwGI4SrJa\nSjlO//K6bpKdWuuwvlOtdb2UsltKOWzae7XWzVm1AwDMioQUAMACaBJP6xfod2YC6brtAACz4JI9\nAAAAAOZKQgoAAACAuZKQAgAAAGCuJKQAAAAAmCsJKQAAAADmSkIKAAAAgLl6dNsDgMv48U/+8raH\nAAAAAFyTGVIAAAAAzJWEFAAAAABzJSEFAAAAwFxJSAEAAAAwVxJSAAAAAMyVhBQAAAAAcyUhBQAA\nAMBcSUgBAAAAMFcSUgAAAADMlYQUAAAAAHN15YRUKWWtlHI4Yf1+KaVOWJZH+myUUnaavoellPbY\nPs5sBwAAAGBxPbrsBqWUrSTvNw+Xp3TbnrCu22y/keRprXWzebyT5DjJ44u0AwAAALDYLp2QStKt\ntT5tEke7kzrUWp+fsf1Oku+NPP4oyVYpZa3WenCBdgAAAAAW2KUv2btAUqg1raG5bK9Va+2M7K+X\n/uypd89rv+xYAQAAALh7bqSoeVMD6qSpHXU8Uj+qnaQ3YZNe03ZeOwAAAAAL7iqX7F3EUpL1JM/S\nvwTvuJTyONOTSi/Tn1l1XvuZSilvJfn2hLEAAAAAcEfcREJqvbnMLkk6pZQX6Rcl3zhnu0kzoy7T\nniTfT/KDC/QDAAAA4JbMPCE1kowaPO6UUnpJfjfJSabPdOqmn3Q6q/08P0yyP7ZuKcmPLrAtAAAA\nAHNwU5fsjXuZ5LM0s5xKKa2xxNWT9JNV3XPaz1Rr/TLJl6PrSinXGzkAAAAAMzXTouallK0J6wYz\nno6SvGj+/2ys23KSTy/QDgAAAMCCu05CatKldd0JSamP09SVamY9HSTZHjSWUjaS7F2k/RpjBQAA\nAOCOuPQle6WU5SSbSd5rHh8m6dRat2utB6WUw1LKZpJO+pfqfTCaTKq1rpdSdpvtukl6tdbNi7YD\nAAAAsNgunZCqtXbST0hNTBLVWlcvsI8zE0wSUAAAAAD310xrSAEAAADAeSSkAAAAAJgrCSkAAAAA\n5kpCCgAAAIC5kpACAAAAYK4kpAAAAACYKwkpAAAAAOZKQgoAAACAuZKQAgAAAGCuJKQAAAAAmCsJ\nKQAAAADmSkIKAAAAgLmSkAIAAABgriSkAAAAAJgrCSkAAAAA5kpCCgAAAIC5kpACAAAAYK4kpAAA\nAACYKwkpAAAAAOZKQgoAAACAuZKQAgAAAGCuHt32ALgdv/93//G2h3Alf/E//K+3PQQAAADgmsyQ\nAgAAAGCuJKQAAAAAmCsJKQAAAADmSkIKAAAAgLmSkAIAAABgriSkAAAAAJgrCSkAAAAA5kpCCgAA\nAIC5enTbAwAA4GJKKctJPk6ynKSX5NNa6+ZYn40kS0naSVpJNmut3Vm1AwDMghlSAAALoJTSSnKc\n5CjJevPvRillf6TPRpKntdbtWut6kk6zzUzaAQBmRUIKAGAxtJM8b5JFB03C6CDJ2kifnSS7I48/\nStIqpazNqB0AYCYkpAAAFkMv/QTRqMOkP3uquZyvVWvtDBprrb0k3STvXrf9ho4JAHig1JACAFgA\nU+o4tZJ0a629Uko7/aTVuF76s6uu2z5VKeWtJN8eW7101jYAwMMmIXVN3/2T7972EK7o39/2AACA\n63s/yXbz/2lJo5fpJ66u236W7yf5wTl9AACGJKQAABZQKWUryYta68EFuk+a+TTL9h8m2R9bt5Tk\nR+dsBwA8UBJSAAALpqn3tFprXR1Z3cv0mUzdGbRPVWv9MsmXY2M8axMA4IFT1BwAYIGUUlrp3w1v\nfaypO9I+6kmSkxm0AwDMjBlSAACLZT/JenMHvFEvmn+fJTkaWb+c5NORx9dth5n6/b/7j7c9hLn4\ni9seAMAdIyEFALAgSimH6c9k2hi7JK5baz0opRykX+T8qOm/kWRvkLy6bjsAwKxISAEALIBSym6S\nlSnNnSQHtdb1UsruSOKqV2vdHHS6bjsAwKxISAEALIAmMXRucui8BNJ12wEAZkFRcwAAAADmSkIK\nAAAAgLmSkAIAAABgriSkAAAAAJgrCSkAAAAA5kpCCgAAAIC5kpACAAAAYK4eXXXDUspaks1a6+qE\nto0kS0naSVpNv+6s2gEAAABYXJdOSJVStpK83zxcntC+keRprXWzebyT5DjJ41m0AwAAALDYrnLJ\nXrfW+jTJ7pT2nbG2j5K0mhlVs2gHAAAAYIFdOiFVaz2Y1lZKWU7SqrV2Rvr3knSTvHvd9suOFQAA\nAIC7Z9ZFzdtJehPW95q267YDAAAAsOCuXNR8imlJo5fpFye/bvuZSilvJfn22Oql87YDAAAAYH5m\nnZA6y6SZT7NsT5LvJ/nBxYYDAAAAwG2YdUKql+kzmbozaD/PD5Psj61bSvKjC2wLAAAAwBzMOiHV\nTZJSSqspRj7wJMnJDNrPVGv9MsmXo+tKKVc4DAAAAABuyqyLmr9o/n02tn45yaczaAcAAABgwV0n\nIfXapXXNrKaDJNuDdaWUjSR7tdbedduvMVYAAAAA7ohLX7JXSllOspnkvebxYZJOrXU7SWqt66WU\n3WZ9N0mv1ro52P667QAAAAAstksnpGqtnfQTUlOTROclkK7bDgAAAMDimnUNKQAAAAA406zvsgc3\n6vf/7j/e9hCu5C9uewAAAABwh5ghBQAAAMBcSUgBAAAAMFcSUgAAAADMlRpS1/Tjn/zlbQ/hSn7/\ntgcAAAAAPFhmSAEAAAAwVxJSAAAAAMyVhBQAAAAAcyUhBQAAAMBcSUgBAAAAMFcSUgAAAADMlYQU\nAAAAAHP16LYHAAAAPEz/5b/8l3x58L/n67//5W0P5cb9L1/8H/m3//bf5l/8i39x20MBuBMkpAAA\ngFvxx3/8x/nlyWe3PYy5+H/+2+dJkv/8n//zLY8E4G6QkAIAAG7Fz3/+8yRJ+Y3/Mf/4rX9+y6O5\nOX//5U9Sf/X/DY8X+P/bu4MXPc77DuDfx3XlmlR45RA1tBRsCVrn4Its65BCu2ALegm9SHWaQ9NL\nJcixB8s9iDTkYG/+gDSyT2nBhEiXVL7JhQpDaCNLXbANaYlWbgzFqODsohpLKvjp4Z1ttpvd1e7q\nnZn3nfl8YHn1Ps/7rn4zO+/M7/3NM8+AghQAANCzA4efzBe/9mrfYbTmozdezt0P38vVj67m6e8/\n3Xc4rXn36+/2HQIwR0xqDgAAAECnFKQAAAAA6JSCFAAAAACdUpACAAAAoFMKUgAAAAB0SkEKAAAA\ngE4pSAEAAADQKQUpAAAAADqlIAUAAABApxSkAAAAAOiUghQAAAAAnVKQAgAAAKBTClIAAAAAdEpB\nCgAAAIBOKUgBAAAA0CkFKQAAAAA6pSAFAAAAQKcUpAAAAADolIIUAAAAAJ16uO8AAAAAxuC5O3fz\nTzd/3ncYADPBCCkAAAAAOqUgBQAAAECnFKQAAAAA6JQ5pAAA5kgp5WSSM7XWE1v0nU5yNMmRJAvN\n61am1Q8AMC0KUgAAc6CU8lKSF5unx7boP53kmVrrmeb5UpJrSQ5Nox8AYJpcsgcAMB9Waq3PJDm/\nTf/Spr5Xkiw0I6qm0Q8AMDVGSDE37v7nv2Xtxz/IZ/c+7TuUPfvK+9/LuXPncvz48b5DAWBO1Vov\nbtdXSjmWZKHWen3D61dLKStJnmse992fZNv/GwBgPxSkmBtrP/5BPr1xte8w9uXND99Lkly6dKnn\nSAAYqCNJVrdoX236HrQfAGCqFKSYG+sjo8ojn8uBw0/2HM3u3bt1M/XuJ3n77bezuLjYdzh7cvDg\nQSO7AObDdkWjjzOZnPxB+3dUSjmc5Aubmo/e730AwHgpSDF3Dhx+Ml/82qt9h7Frty5+K5/euJq1\ntbVcuXKl73D2xcgugLm21cinafYnyTeSfHN34QAAKEhB6x778lfz/Jd+K7dv3+47lD1ZXl7O2tra\n3MUNMFKr2X4k08oU+u/nu0kubGo7muRHu3gvADBCClLQskd++/dz6e/+qu8w9mxxcXFuR3QBjNBK\nkpRSFmqtG0c0PZ7kxhT6d1RrvZXk1sa2Uso+FgMAGIuH+g4AAIAH9k7z+Oym9mNJfjiFfgCAqWql\nIFVKuVBKqVv8HNvwmtOllKXmtZdLKUc2/Y4d+wEARupXLq1rRjVdTHJ2va2UcjrJa7XW1Qftb21J\nAK6PccIAAA9dSURBVIDRavOSvbNbtK0PBz+d5Jla65nm+VKSa0kO7aYfAGBsmhN7Z5L8afP8cpLr\ntdazSVJrPVVKOd+0ryRZXc+lptEPADBNrRWkaq3f2aF7KcnzG56/kuSlUsrJWuvFXfQDAIxKrfV6\nJgWpbYtE9ysgPWg/AMC0tDWH1HZ3aVk/u7fQJFVJ/m+Y+UqS5+7X31K8AAAAAHSktUnNmzmgbjRz\nR13bMH/UkUxuLbzZatN3v34AAAAA5libc0gdTXIqk7u1LCW5Vko5lO2LSh9nMrLqfv3bKqUcTvKF\nLeIAAAAAYEa0VZA6teGOLNdLKe9kMin56fu87353cblf/zeSfHMX8QEAAADQk1YKUptvD1xrvV5K\nWU3y+SQ3sv1Ip5VMik479e/ku0kubGo7muRH93kfAAAAAB1p85K9zT5OcjXNKKdSysKmwtXjmRSr\nVu7Tv61a660ktza2lVIePPIdPHHnjVZ/PwAAAMDQTH1S81LKS1u0rY94eivJO82/n930smNJfriL\nfgAAAADmWBt32VvZoij1epp5pZpRTxeTnF3vLKWcTvLabvpbiBcAAACADk39kr1a68VSyuVSypkk\n1zO5VO8vNxaTaq2nSinnSymX08wbVWs9s9t+AACAefPPn30pT9x5te8wWvNB3wEAc6WtSc1P7OI1\nOxaYFKAAAAAAhqmNS/YAAAAAYFsKUgAAAAB0SkEKAAAAgE4pSAEAAADQKQUpAAAAADqlIAUAAABA\npx7uOwAYg6e//3TfIezZykcrfYcAAADAQBkhBQAAAECnFKQAAAAA6JSCFAAAAACdUpACAAAAoFMK\nUgAAAAB0SkEKAAAAgE4pSAEAAADQKQUpAAAAADqlIAUAAABApxSkAAAAAOiUghQAAAAAnXq47wDo\n3t3//Les/fgH+ezep32Hsif3bt3sOwQAAABgChSkRmjtxz/Ipzeu9h3Gvj104NG+QwAAAAAegILU\nCK2PjCqPfC4HDj/ZczR789CBR/PYH/xZ32Hs2bs3f953CHu2eOdurvQdBAAAAIOkIDViBw4/mS9+\n7dW+wwAAAABGRkEK2NHy8nIWFxf7DmPPDh48mHPnzuX48eN9hwIAAMAmClLAlg4+UpIka2truXJl\nfi/eu3TpUt8hAAAAsImCFLClc3/4SPJ7f5zbt2/3HcqeLS8vZ21tbS5jBwAAGAMFKWBLx3/n13Lp\n9fkcXbS4uDjXo7oAAACG7qG+AwAAAABgXBSkAAAAAOiUS/YAAAA6cO/WzXz0xst9h9Gar7z/PXc5\nBnZNQQoAAKBFDx14NElS736Sux++13M07XmzWTZ3OQZ2Q0EKAACgRY99+atJks/ufdpzJO25d+tm\n6t1P3OUY2DUFKQAAgBY98tu/n8Mnv9l3GK366I2XBz36C5g+k5oDAAAA0CkjpKADT9x5o+8Q9uWD\nvgMAAABgkIyQAgAAAKBTClIAAAAAdEpBCgAAAIBOKUgBAAAA0CkFKQAAAAA6pSAFAAAAQKcUpAAA\nAADolIIUAAAAAJ16uO8AAAAAGIarH13N099/uu8wWvXu19/tOwQYBCOkAAAAAOiUEVIAAABMxXN3\n7uafbv687zCAOWCEFAAAAACdMkIKAACAqfjnz76UJ+682ncYrfqg7wBgIBSkgMFaXl7O4uJi32Hs\nycGDB3Pu3LkcP36871AAAABaoyAFDM7BgweTJGtra7ly5UrP0ezPpUuX+g4BAACgNQpSD+AnP/lJ\nbl38Vj6792nfoezJvVs3+w4BWnXu3Lkkye3bt3uOZG+Wl5eztrY2d3EDAADs1UwXpEopp5McTXIk\nyUKSM7XWlX6j+qVvf/vb+fTG1b7D2LeHDjzadwjQiuPHj8/lCKPFxcW5HdEFDMus52AAwPyb2YJU\nkwg9U2s90zxfSnItyaFeA9tgfRRDeeRzOXD4yZ6j2ZuHDjyax/7gz/oOgxn39Pef7juEfXv36+/2\nHQLAXJqHHAwAmH8zW5BKspTk+Q3PX0nyUinlZK31Yk8xbenA4Sfzxa8N+04SjNO7N3/edwgAdG9u\ncjBg9ty7dTMfvfFy32G06ivvf89NaGAKZrIgVUo5lmSh1np9va3WulpKWUnyXBLJEHTgiTtv9B3C\nvn3QdwAAc0gOBuzX+nQg9e4nufvhez1H0643m+WbxykiYJbMZEEqk/kKVrdoX236AAZreXk5i4uL\nfYexJwcPHnSmEIZBDgbsy2Nf/mqSzN0Nn/bq3q2bqXc/ydtvvz13+dpeye9o2ywXpLbycSYTa26p\nlHI4yRc2NT+VJD/72c+mE9kGn3zySZLks/+5k3v/9R9T//3A/r3/jd/sO4S9++BOkmRtbW0uJzd/\n88038+yzz/YdBjPuqaeeyssvT/dSjg3H+ANT/cXjNBc52Kuvvpqf/vSnU/+9dG/97yifnn/l138j\nC3/0F32H0bqPL/9t7n743tzma3slvxuOWczBSq11etFMSSnlpSR/XWs9tKn9cpLVWuupbd73N0m+\n2X6EAMAM+vNa69/3HcQ8k4MBAPvwJ7XWf9jrm2Z1hNRqtj8Lt9Mth7+b5MKmtt9M8ntJ3kty78FD\n68zRJD9K8idJbvQcyxhY392yvrtnnXfL+u7WU5nMbfTvfQcyAHKwrY3lM205h2MMy5hYziEZwzIm\nw1vOA0l+N8m+hgvOakFqJUlKKQu11o3zGDyeHf5otdZbSW5t0fUv0w2vfaWU9X/eqLW+32csY2B9\nd8v67p513i3ru1sb1vd/9xnHQIw+B9vKWD7TlnM4xrCMieUckjEsYzLY5fzX/b7xoWlGMUXvNI+b\nL1Y9luSHHccCADAWcjAAoBMzWZBqzshdTHJ2va2UcjrJa5vO1gEAMCVyMACgK7N6yV5qradKKeeb\nSTRXMplI80zfcQEADJkcDADowswWpJJk5MnPfyX5VvNI+6zvblnf3bPOu2V9d8v6nrKR52BbGcs2\nZjmHYwzLmFjOIRnDMibjWc5dKbXWvmMAAAAAYERmcg4pAAAAAIZLQQoAAACATilIAQAAANApBSkA\nAACAFpRSXiil1B1+jvQdY18UpGZQKeV0KWWplHKhlHJ5zBto20opx0op15odwS9KKef7jmksSikL\npZSXSikLfccyJs3+5aW+4xiyZv99vvm5XEo51ndMQ1JKOVlKubxNn+MnUzeW7Wqnz9ZQjCHvK6Uc\nabbT9WW8MPRca8g5ZfP326qAMdjcYqC56sdJVpKcTXJmw8/FJG/VWld6jK1XD/cdAP9fKeV0kmfW\nb7dcSllKci3JoV4DG6DmoHUtyXeSvJLkxSSnSymP11pP9RrcOLye5GQmO+LVnmMZvFLKC0mWkrxS\na32t73iGqvlyc219HTcJ4z/GPvyBNcnpi83TX0nEHT9pwxi2q/t9toZiRHnftUyW72ySZ5OsF92G\ntIybDT2nPLtF2+AKGCPIVZc2L1cp5UyG/dm8r1Jr7TsGNiil/CLJ87XW683zhSS/SHKq1nqx1+AG\npvmi+GKt9eyGtgtJTtZaS3+RDV9zwDmb5IUkh2qtQ0weZkbzhepMJvsW67pFpZSayZfX65vajo75\n7Nc0lFJO1lovNtvz+c37acdP2jCG7ep+n62hGEPe14zeO1lr/c6GtqWm7Wh/kbVn6DllKeXCwAqm\nWxp6rro+snZjLthsu2fG8PfdiUv2ZkhzoFzY+EWm+UCuJHmut8CGazWTM0gbXU7+L+GkPafyyzN2\ntKjZr5zP5MvT4A7wM+rM+j+aBGRFMerB7fTl3/GTNoxluxpKYW0XBp/31VpXNhajNnir82C6M/Sc\nchDb5k7GkKs2n83NueBSth79NioKUrPlSLYeZrra9DFFzY5h8/peyOTL4yB3hrOguTRgyInDrFlK\n8pqCSGdey+QSkAtNgrWU5ETPMY2B4ydtsF0NyBjzvuakyJH1S06HZiw5ZTOn0o1m7qhrA5w/anS5\nainlZJJ3xrTM21GQmi3bJTcfZwTV8RnxYlSqW9Ocgfz8FmebaUGzvl9Icq2ZkPdGk8ic7ju2oWqS\n/tcymcviWtM2+mSjA46ftMF2NXyDzPs2TFB/OcmR5svvoIwspzyayUiwM5nsl64NZVTfiHNVo6Ma\nClLzY6g72JnRnGV5Z0RD1/uwlF8dLk97XmgeT2WSlJ7I5FKT80NMTmdBMx/AkSTPpClMNcmV0RT9\ncfykDbarOTfwvO+tWuuJZt6ot5JcaI5PQzKWnPJUrfVsrfV6MyH28037UAo2o8tVm3ndrg+4gLon\nClKzZTXbn3Fzhr1FzdDXE0Md0jwLmnV8zc63U+tFkLO11reayxVOZbKveXGH97EPTdHpQibJ4/Vm\nf3Iik7+Ds2DtcvykDbargRp63rcx19owiftgJk4eU065eRmbEWGrST7fT0RTN6pctckVX8o4iqm7\noiA1W1aSLSdWfDzJje7DGYdmfS9lQAfqGfV6Jmc7anPXsQvJ5A5kpRTbdztWNj2ueycuN2nDC9k0\nF0mt9a1Mzk4/3ltU4+D4SRtsVwM05Lxvh8u4VjOsUX1jzyk/TnK17yCmZGy56vlMRjBev+8rR0JB\nara80zw+u6n9WJIfdhzLmKyPaBjSgXoWPZ/JNfDrP+tn7I7GpM9tWT+4b75c7PE0dxaiM9Z3uxw/\naYPtapiGnPctbS5KNc8XMqzJv0eRUzaXlW5uW//7DuXOiaPJVZvLZl/IpCBOo9Ra+46BDUopFzK5\nxfCJ5vnpJM8MdUhx35oJH1fyq2c6VwY6p8DMaLbt80kODTQpnAnr2/j6PqQZ5v6PtdZD/UY2PE2S\neDPJ8+tnvpr1/Xqt9ZlegxuQJkFfqrWWTe2On0zdmLar7T5bQzL0vK/ZPk80lzytt51PcnkIy7ed\noeaUzRxKR2qt39nQdiHJK0MaYTOWXHV99F4ztxsNBakZ1Bw4jmRywFzdcO03U9Ss5+0mBLzuC2Q7\nmoPMi5nchexIJmd4Lm882DJdzbb+eCb7lIVMrtMfTMI2S5rteynN/jv5f/N38ACadXsmyZ9msh2/\nlcm++uyG1zh+MnVD365289kagjHkfc38NEv55fa6kuT8UO/2OoacsinWHElyPZNL9QaZw8lVx0tB\nCgAAAIBOmUMKAAAAgE4pSAEAAADQKQUpAAAAADqlIAUAAABApxSkAAAAAOiUghQAAAAAnVKQAgAA\nAKBTClIAAAAAdEpBCgAAAIBOKUgBAAAA0CkFKQAAAAA6pSAFAAAAQKcUpAAAAADolIIUAAAAAJ1S\nkAIAAACgU/8Ld3oToNbVpY0AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def stack(attr, ax, title, stack_signal=False):\n", " hs = StackHist(title)\n", " hs.add_mc_background(getattr(rs_TTZ,attr), 'TTZ', lumi=rs_TTZ.lumi)\n", " hs.add_mc_background(getattr(rs_TTW,attr), 'TTW', lumi=rs_TTW.lumi)\n", " hs.add_mc_background(getattr(rs_TTH,attr), 'TTH', lumi=rs_TTH.lumi)\n", " \n", " hs.set_mc_signal(getattr(rs_TTTT,attr), 'TTTT', lumi=rs_TTTT.lumi, stack=stack_signal, scale=20)\n", " \n", " hs.luminosity = 40\n", " hs.energy = 13\n", " hs.draw(ax)\n", "\n", "fig, (ax0, ax1) = plt.subplots(1,2, figsize=(12,5))\n", "stack('b_jet_count', ax0, 'B-Jet Multiplicity', )\n", "stack('lepton_count', ax1, 'Lepton Multiplicity', )" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 2 }