This Notebook is simply a playground to examine the resulting histograms from the main TTTT analysis executable.
import ROOT
from IPython.display import display, display_markdown
%load_ext autoreload
%autoreload 2
import random
from utils import ResultSet
from utils import clear, show_event, show_value, show_function, normalize_columns, CANVAS, PDG
First, we need to load the pre-processed datafiles. These will generally contain a set of histograms of various quantities calculated from data in the input MiniTrees. However, they can also contain things besides histograms. For example, C++ STL containers can be serialized to the ROOT file to save things such as counters or even "raw" event information.
rs_TTZ = ResultSet("TTZ", "../data/TTZToLLNuNu_treeProducerSusyMultilepton_tree.root")
rs_TTW = ResultSet("TTW", "../data/TTWToLNu_treeProducerSusyMultilepton_tree.root")
rs_TTTT = ResultSet("TTTT", "../data/TTTT_ext_treeProducerSusyMultilepton_tree.root")
def plot_Jet_eta_phi(dataset, event_number = None):
import matplotlib.pyplot as plt
%matplotlib inline
if event_number is None:
event_number = random.randint(0,len(dataset.Jet_pt)-1)
phis = list(dataset.Jet_phi[event_number])
etas = list(dataset.Jet_eta[event_number])
mc_phis = list(dataset.GenPart_phi[event_number])
mc_etas = list(dataset.GenPart_eta[event_number])
mc_ids = list(dataset.GenPart_pdgId[event_number])
mc_phis,mc_etas = zip(*[(phi, eta) for phi, eta, pdgid in zip(mc_phis,mc_etas,mc_ids) if abs(pdgid) in {1,2,3,4,5,21}])
plt.plot(phis,etas, 'r.', label='Jets')
plt.plot(mc_phis,mc_etas, 'b.', label='GenPart')
plt.xlim(-3.14159, 3.14159)
plt.ylim(-5,5)
plt.xlabel('Phi')
plt.ylabel('Eta')
plt.title("Jet/GenPart distribution for event {}".format(event_number))
plt.grid()
plt.legend()
plt.show()
plot_Jet_eta_phi(rs_TTZ)
img, fns = show_value(rs_TTTT, 'reco_top_mass')
display(img)
display(fns)
# display(show_value(hists_TTTT.mc_top_mass))
n = 0
def to_str(vec):
return '|'.join(map(lambda s: "{!s:<4s}".format(PDG.get(s,s)),vec))
# print(to_str(rs_TTTT.Jet_mcFlavour[n]))
print(to_str(rs_TTTT.Jet_mcMatchFlav[n]))
# print(to_str(rs_TTTT.Jet_mcMatchId[n]))
show_event(rs_TTTT, n)
clear()
ResultSet.hist_array_single('dijet_inv_mass')
CANVAS.Draw()
clear()
ResultSet.hist_array_single('reco_top_mass')
CANVAS.Draw()
clear()
ResultSet.hist_array_single('mc_top_mass')
CANVAS.Draw()
clear()
ResultSet.hist_array_single('dijet_inv_mass_ssdilepton')
CANVAS.Draw()
clear()
ResultSet.hist_array_single('dijet_inv_mass_osdilepton')
CANVAS.Draw()
clear()
ResultSet.hist_array_single('dijet_inv_mass_trilepton')
CANVAS.Draw()
CANVAS.Clear()
ResultSet.stack_hist_array(*zip(('jet_count_os_dilepton','Jet Multiplicity for Opposite-Sign Dilepton Events'),
('jet_count_ss_dilepton','Jet Multiplicity for Same-Sign Dilepton Events'),
('jet_count_trilepton', 'Jet Multiplicity for Trilepton Events')
),
normalize_to=0,
enable_fill=True,
shape=(3,1),
)
CANVAS.Draw()
CANVAS.Clear()
ResultSet.stack_hist_array(*zip(('jet_count_os_dilepton','Jet Multiplicity for Opposite-Sign Dilepton Events'),
('jet_count_ss_dilepton','Jet Multiplicity for Same-Sign Dilepton Events'),
('jet_count_trilepton', 'Jet Multiplicity for Trilepton Events')
),
normalize_to=0,
enable_fill=True,
shape=(3,1),
draw_option='nostack',
)
CANVAS.Draw()
rs_TTTT.draw()
rs_TTTT.nLepvsnJet_norm = normalize_columns(rs_TTTT.nLepvsnJet)
rs_TTZ.nLepvsnJet_norm = normalize_columns(rs_TTZ.nLepvsnJet)
rs_TTW.nLepvsnJet_norm = normalize_columns(rs_TTW.nLepvsnJet)
clear()
rs_TTZ.nLepvsnJet_norm.Draw('COLZ')
CANVAS.Draw()
rs_TTTT.nLepvsnJet_norm = normalize_columns(rs_TTTT.genEle_count_v_recEle_count)
rs_TTZ.nLepvsnJet_norm = normalize_columns(rs_TTZ.genEle_count_v_recEle_count)
rs_TTW.nLepvsnJet_norm = normalize_columns(rs_TTW.genEle_count_v_recEle_count)
clear()
rs_TTTT.nLepvsnJet_norm.Draw('COLZ')
CANVAS.Draw()
event_number = int(random.uniform(0,100))
TTZ_event = show_event(rs_TTZ, event_number)
TTW_event = show_event(rs_TTW, event_number)
TTTT_event = show_event(rs_TTTT, event_number)
We can use the show_event
function to look at the Generator-Level particles for the event. They are color-coded based on their pt relative to the maximum pt of a particles in the event. Darker is lower, greener/lighter is higher. The following are the particle trees for event #24 in each dataset.
ResultSet.stack_hist("lepton_count", title="Lepton Multiplicity",
enable_fill=True, normalize_to=1, make_legend=True, draw=True)
ResultSet.stack_hist("b_jet_count", title="B-Jet Multiplicity",
enable_fill=True, normalize_to=1, make_legend=True, draw=True)
display(show_value(rs_TTTT, rs_TTTT.dijet_inv_mass_osdilepton)[0])
display(show_value(rs_TTTT, "GenPart_pdgId_counter")[0])