P1

October 23, 2017

1 Problem 1

The likelihood for a coin flipping experiment will be defined by the binomial

$$
\begin{equation*}
\mathcal{L}(p)=\binom{n}{Y} p^{\Upsilon}(1-p)^{n-Y} \tag{1}
\end{equation*}
$$

where - n : total number of flips $-Y$: Observed number of Heads $-p$: Probability of each flip being Heads

The test statistic, λ, is defined as

$$
\begin{equation*}
\lambda=\frac{\mathcal{L}\left(p_{0}\right)}{\mathcal{L}(\hat{p})} \tag{2}
\end{equation*}
$$

Where \hat{p} is the value of p that maximizes \mathcal{L}. It can be simply found by setting $\left.\frac{d}{d p} \mathcal{L}(p)\right|_{p=\hat{p}}=0$ that $\hat{p}=\frac{\gamma}{n}$. From this it follows that

$$
\begin{equation*}
\lambda=\frac{1}{2^{n}}\left(\frac{n}{Y}\right)^{Y}\left(\frac{n}{n-Y}\right)^{n-Y} \tag{3}
\end{equation*}
$$

The likelihood ratio test then is given (for some α), by

$$
\begin{align*}
\lambda & <k_{\alpha} \tag{4}\\
\frac{1}{2^{n}}\left(\frac{n}{Y}\right)^{Y}\left(\frac{n}{n-Y}\right)^{n-Y} & <k_{\alpha} \tag{5}
\end{align*}
$$

In [1]:
mport numpy as np
from scipy.stats import binom
import matplotlib.pyplot as plt
\%matplotlib inline
plt.rcParams['figure.dpi']=150
In [2]: Nflips = 36
def lambda_(n, Y):
return $2.0 * *-\mathrm{n} *(\mathrm{n} / \mathrm{Y}) * * \mathrm{Y} *(\mathrm{n} /(\mathrm{n}-\mathrm{Y})) * *(\mathrm{n}-\mathrm{Y})$
xs = np. array (range(Nflips+1))

```
plt.bar(xs, lambda_(Nflips, xs))
plt.xlabel('Y')
plt.ylabel(r'$\lambda$')
```

/usr/lib/python3.6/site-packages/ipykernel/__main__.py:3: RuntimeWarning: divide by zero encou app.launch_new_instance()

Out [2]: $\operatorname{Text}(0,0.5, ' \$ \backslash \backslash l a m b d a \$ ')$

a) We have as a given that the exclusion region is $|Y-18| \geq 4$. This corresponds to $k_{\alpha}=$ $0.4080 \ldots$, so now let's find the α value by running some MC experiments.

```
In [3]: k = lambda_(36, 14)
    Nexp = 1000000
    Ys = binom.rvs(Nflips, 0.5, size=Nexp)
    lambdas = lambda_(Nflips, Ys)
    Npass = np.sum(lambdas < k)
    print(f'alpha = {Npass/Nexp}')
alpha = 0.132401
```

So, for the given acceptance criterion, $\alpha \approx 0.13$.
b) Now, suppose that $p=0.7$. What is the value of beta?

```
In [4]: Ys = binom.rvs(Nflips, 0.7, size=Nexp)
    lambdas = lambda_(Nflips, Ys)
    Npass = np.sum(lambdas >= k)
    print(f'beta = {Npass/Nexp}')
beta = 0.162632
```

/usr/lib/python3.6/site-packages/ipykernel/__main__.py:3: RuntimeWarning: divide by zero encou
app.launch_new_instance()

So, for the chosen value of $p, \beta \approx 0.16$.
c) False, it is the probability of our test rejecting H_{0} when it is true.
d) False, it is the probability of our test failing to reject H_{0} when $H_{a}(p=0.7)$ is true.
e) Correct, It was assumed that $H_{a}(p=0.7)$ was true.
f) True, since the alternative hypotheses is more similar to the null hypotheses, they are more difficult to distinguish, which will lead to a larger β value.
g) False, α is the probably rejecting H_{0}, when it is true.
h) True, the rejection region growing from $|y-18| \geq 4$ to $|y-18| \geq 2$ would lead to more incorrect rejections.
i) True.
j) False, it would be smaller because a less stringent rejection criteria would make it easier to reject H_{0}.

P3

October 23, 2017

An experiment yields two samples x_{1}, and x_{2} that are drawn from a Cauchy distribution with unkown mean, μ. The null hypotheses is $\mu=0.5$, and the alternative is $\mu=0.5$. If we apply a likelihood ratio test, our test statistic is

$$
\begin{equation*}
\lambda=\frac{\mathcal{L}(\mu=0.5)}{\mathcal{L}(\mu=1.5)+\mathcal{L}(\mu=0.5)} \tag{1}
\end{equation*}
$$

where,

$$
\begin{equation*}
\mathcal{L}(\mu)=\frac{1}{\pi^{2}} \frac{1}{\left(1+\left(x_{1}-\mu\right)^{2}\right)\left(1+\left(x_{2}-\mu\right)^{2}\right)} \tag{2}
\end{equation*}
$$

In [1]: import numpy as np
from scipy.stats import cauchy
import matplotlib.pyplot as plt
\%matplotlib inline
plt.rcParams['figure.dpi']=150
In [2]: def lambda_(x1, x2, mu_0, mu_a, type_=1):
$\mathrm{L}=$ cauchy.pdf
$L_{-} 0=L\left(x 1, m u _0\right) * L\left(x 2, m u _0\right)$
$L_{-} a=L\left(x 1, m u_{-} a\right) * L\left(x 2, m u_{-} a\right)$
return L_0 / L_a
In [3]: $\mathrm{dx}=0.05$
bound $=3$
x1s, $x 2 s=n p . m g r i d[s l i c e(-b o u n d, b o u n d+d x, d x)$, slice(-bound,bound+dx, dx)]
lambdas $=$ lambda_(x1s, x2s, $0.5,1.5)$
In [4]: levels = list(range(7))
plt.pcolormesh(x1s, x2s, lambdas)
plt.colorbar().set_label(r'\$\lambda\$')
CS = plt.contour (x1s, x2s, lambdas, levels=levels, colors='k')
plt.clabel(CS, inline=1)
plt.xlabel(r'\$x_1\$')
plt.ylabel(r'\$x_2\$')
max_idx = np.unravel_index(np.argmax(lambdas), lambdas.shape)
print (f'Maximum level of lambda: \{lambdas[max_idx]:0.3f\} @ x1=\{x1s[max_idx]:0.2f\} x2=\{

Now, what are the α and β values for various values of λ ?
In [5]: Nlambdas $=300$ \# Test Nlambdas values of lambda Nexps $=10000$ \# Run Nexps MC experiments

```
test_lambdas = np.linspace(0, np.max(lambdas), Nlambdas)
```

def mk_sample(mu):
return cauchy.rvs(mu, size=Nexps)
sample_lambdas = lambda_(mk_sample(0.5), mk_sample(0.5), 0.5, 1.5)
alphas = np.zeros (Nlambdas)
for i, test_lambda in enumerate(test_lambdas):
Npass = np.sum(sample_lambdas < test_lambda)
alphas[i] = Npass / Nexps
sample_lambdas = lambda_(mk_sample(1.5), mk_sample(1.5), 0.5, 1.5)
betas = np.zeros (Nlambdas)
for i, test_lambda in enumerate(test_lambdas):
Npass = np. sum (sample_lambdas >= test_lambda)
betas[i] = Npass / Nexps

```
    plt.plot(test_lambdas, alphas, label=r'$\alpha$')
    plt.plot(test_lambdas, betas, label=r'$\beta$')
    plt.xlabel(r'$\lambda$')
    plt.legend()
Out [5]:
<matplotlib.legend.Legend at 0x7f3b5f1bfeb8>
```


Suppose we want to define our rejection region with $\alpha=0.2$. This corresponds to a rejection region of $\lambda<0.73$, and a corresponding β value of 0.45 .

