main.tex 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. % rubber: module pdftex
  2. \documentclass[english,aspectratio=43]{beamer}
  3. \usepackage{graphicx}
  4. \usepackage{amssymb}
  5. \usepackage{booktabs}
  6. \usepackage{siunitx}
  7. \usepackage{subcaption}
  8. \usepackage{marvosym}
  9. \usepackage{verbatim}
  10. \newcommand{\pb}{\si{\pico\barn}}%
  11. \newcommand{\fb}{\si{\femto\barn}}%
  12. \newcommand{\invfb}{\si{\per\femto\barn}}
  13. \newcommand{\GeV}{\si{\giga\electronvolt}}
  14. \usetheme[]{bjeldbak}
  15. \begin{document}
  16. \title[e Reco. Validation]{Offline Electron Reconstruction Validation}
  17. \author[C. Fangmeier]{\textbf{Caleb Fangmeier} \\ Ilya Kravchenko, Greg Snow}
  18. \institute[UNL]{University of Nebraska \-- Lincoln}
  19. \date{July 21, 2017}
  20. \titlegraphic{%
  21. \begin{figure}
  22. \includegraphics[width=1in]{CMSlogo.png}\hspace{0.75in}\includegraphics[width=1in]{nebraska-n.png}
  23. \end{figure}
  24. }
  25. \begin{frame}[noframenumbering,plain]
  26. \titlepage%
  27. \end{frame}
  28. \begin{frame}{Introduction}
  29. \begin{itemize}
  30. \item Our goal is to study \textbf{seeding} for the \textbf{offline} Gsf tracking with the \textbf{new pixel detector}.
  31. \item Ongoing studies\footnote{\url{https://indico.cern.ch/event/613833/contributions/2646392/attachments/1486134/2307836/EGMHLT_PixelMatching_Jun30.pdf}} in HLT examine the resolution of RecHits used in Gsf Tracking.
  32. \item In those studies, the resolution is computed by measuring the distance between the \textbf{RecHits} and the extrapolated paths from ECAL \textbf{super-clusters} (SCs).
  33. \item For \textbf{offline} reconstruction, we compute residuals by comparing the position of \textbf{RecHits} and associated \textbf{SimHits}.
  34. \item Knowing these resolutions is important in choosing the size of search windows in the hit matching algorithm used in electron reconstruction.
  35. \end{itemize}
  36. \end{frame}
  37. \begin{frame}{Introduction}
  38. \begin{itemize}
  39. \item We use Rafael Lopes de Sa's analysis setup\footnote{\url{https://github.com/rafaellopesdesa/cmssw/tree/ValidationGsfTracks81X}} that is derived from the standard offline tracking reconstruction tool \texttt{TrackingNtuple} from \texttt{Validation/RecoTrack}.
  40. \item Source dataset: \\ {\scriptsize \texttt{/DYJetsToLL\_M-50\_TuneCUETP8M1\_13TeV-madgraphMLM-pythia8/\\ PhaseIFall16DR-FlatPU28to62HcalNZSRAW\_81X\_upgrade2017\_realistic\_v26-v1/\\ GEN-SIM-RAW}}
  41. \item Using Release \texttt{CMSSW\_8\_1\_0}
  42. \item Figures in this talk use 31790 events (could be re-run with more)
  43. \end{itemize}
  44. \end{frame}
  45. \begin{frame}{Gsf Electron Seeding I}
  46. \begin{columns}
  47. \begin{column}{0.75\textwidth}
  48. \begin{figure}
  49. \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding1.png}
  50. \end{figure}
  51. \end{column}
  52. \begin{column}{0.25\textwidth}
  53. \begin{figure}
  54. \hspace{-1in}
  55. \vspace{-1in}
  56. \includegraphics[width=1.8\textwidth]{diagrams/window1.png}
  57. \end{figure}
  58. \end{column}
  59. \end{columns}
  60. \vfill
  61. \footnotesize{Windows from \url{https://indico.cern.ch/event/611042/contributions/2464057/attachments/1406271/2148742/ElectronTracking30112016.pdf}}
  62. \end{frame}
  63. \begin{frame}{Gsf Electron Seeding II}
  64. \begin{columns}
  65. \begin{column}{0.66\textwidth}
  66. \begin{figure}
  67. \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding2.png}
  68. \end{figure}
  69. \end{column}
  70. \begin{column}{0.33\textwidth}
  71. \begin{figure}
  72. \hspace{-0.75in}
  73. \vspace{1in}
  74. \includegraphics[width=1.5\textwidth]{diagrams/window2.png}
  75. \end{figure}
  76. \end{column}
  77. \end{columns}
  78. \end{frame}
  79. \begin{frame}{Gsf Electron Seeding III}
  80. \begin{center}
  81. \begin{figure}
  82. \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding3.png}
  83. \end{figure}
  84. \end{center}
  85. \end{frame}
  86. \begin{frame}{TrackingNtuple}
  87. The \texttt{TrackingNtuple} format contains (among others) the below crosslinked collections
  88. \begin{center}
  89. \begin{figure}
  90. \includegraphics[width=\textwidth]{diagrams/TrackingNtuple.png}
  91. \end{figure}
  92. \end{center}
  93. \end{frame}
  94. \begin{frame}{Finding \texttt{SimHit}/\texttt{RecHit} Pairs}
  95. To find residuals for calculating resolutions, require a pair containing 1
  96. \texttt{RecHit} and 1 \texttt{SimHit}. Procedure is as follows:
  97. \begin{enumerate}
  98. \item For each \texttt{Track}, get it's \texttt{Seed} (unique)
  99. \item For each \texttt{RecHit} in the \texttt{Seed}, require
  100. \begin{itemize}
  101. \item It is in the specified subdetector (e.g. BPIX Layer 1)
  102. \item It is the 1st/2nd hit in the \texttt{Seed}.
  103. \item It is matched to at least one \texttt{SimHit}.
  104. \end{itemize}
  105. \item For each \texttt{RecHit} (\textbf{B}) passing the above, take the first matched
  106. \texttt{SimHit} (\textbf{A}).
  107. \item Now look through all \texttt{SimHits} associated with
  108. \texttt{SimTracks} associated with the original \texttt{Track}. If
  109. \textbf{A} exists in this set. Make a pair of \texttt{SimHit} \textbf{A}
  110. and \texttt{RecHit} \textbf{B}.
  111. \end{enumerate}
  112. \end{frame}
  113. \begin{frame}{Finding \texttt{SimHit}/\texttt{RecHit} Pairs}
  114. \begin{center}
  115. \begin{figure}
  116. \includegraphics[width=\textwidth]{diagrams/TrackingNtuple_traversal.png}
  117. \end{figure}
  118. \end{center}
  119. \end{frame}
  120. \begin{frame}{BPIX Hit 1 Resolution}
  121. \begin{figure}
  122. \centering
  123. \includegraphics[height=0.8\textheight]{figures/first_hits.png}
  124. \end{figure}
  125. \end{frame}
  126. \begin{frame}{BPIX Hit 1 Resolution vs. $\eta$}
  127. \begin{figure}
  128. \centering
  129. \includegraphics[height=0.8\textheight]{figures/first_hits_v_eta.png}
  130. \end{figure}
  131. \end{frame}
  132. \begin{frame}{BPIX Hit 2 Resolution}
  133. \begin{figure}
  134. \centering
  135. \includegraphics[height=0.8\textheight]{figures/second_hits.png}
  136. \end{figure}
  137. \end{frame}
  138. \begin{frame}{BPIX Hit 2 Resolution vs. $\eta$}
  139. \begin{figure}
  140. \centering
  141. \includegraphics[height=0.8\textheight]{figures/second_hits_v_eta.png}
  142. \end{figure}
  143. \end{frame}
  144. \begin{frame}{Resolution dependence on even/odd ladder number}
  145. \begin{figure}
  146. \centering
  147. \includegraphics[width=0.8\textwidth]{diagrams/dphi_v_ladder_dylan.png}
  148. \end{figure}
  149. {\small
  150. \begin{itemize}
  151. \item Above From Dylan Rankin's June 30 Presentation. (See slide 1)
  152. \item We have slightly different definitions of $\Delta\phi_1$, but wanted to investigate ourselves.
  153. \end{itemize}
  154. }
  155. \end{frame}
  156. \begin{frame}{Resolution dependence on even/odd ladder number}
  157. \begin{figure}
  158. \centering
  159. \includegraphics[height=0.8\textheight]{figures/delta_phi_z_v_ladder.png}
  160. \end{figure}
  161. \end{frame}
  162. \begin{frame}{Conclusions}
  163. \begin{itemize}
  164. \item Analysis machinery for offline electron RECO studies with MC truth is in place.
  165. \item Preliminary plots of $\Delta\phi_{1/2}$ and $\Delta z_{1/2}$ for BPIX
  166. Layers 1/2 are shown.
  167. \item Code for this analysis is here: \\ \footnotesize
  168. \begin{center}\url{git.fangmeier.tech/caleb/EGamma\_ElectronTrackingValidation}\end{center}
  169. \item next to come
  170. \begin{itemize}
  171. \item run on larger event samples (\texttt{trackingNtuples} are generated, just need to use)
  172. \item include FPIX
  173. \item investigate reasons for rec hit inefficiencies
  174. \item introduce triplet-based pixel matching for the seeds and repeat the studies
  175. \end{itemize}
  176. % \item What specific figures/measurements are of interest to experts?
  177. \end{itemize}
  178. \end{frame}
  179. \end{document}