123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- % rubber: module pdftex
- \documentclass[english,aspectratio=43]{beamer}
- \usepackage{graphicx}
- \usepackage{amssymb}
- \usepackage{booktabs}
- \usepackage{siunitx}
- \usepackage{subcaption}
- \usepackage{marvosym}
- \usepackage{verbatim}
- \newcommand{\pb}{\si{\pico\barn}}%
- \newcommand{\fb}{\si{\femto\barn}}%
- \newcommand{\invfb}{\si{\per\femto\barn}}
- \newcommand{\GeV}{\si{\giga\electronvolt}}
- \usetheme[]{bjeldbak}
- \begin{document}
- \title[e Reco. Validation]{Offline Electron Reconstruction Validation}
- \author[C. Fangmeier]{\textbf{Caleb Fangmeier} \\ Ilya Kravchenko, Greg Snow}
- \institute[UNL]{University of Nebraska \-- Lincoln}
- \date{July 21, 2017}
- \titlegraphic{%
- \begin{figure}
- \includegraphics[width=1in]{CMSlogo.png}\hspace{0.75in}\includegraphics[width=1in]{nebraska-n.png}
- \end{figure}
- }
- \begin{frame}[noframenumbering,plain]
- \titlepage%
- \end{frame}
- \begin{frame}{Introduction}
- \begin{itemize}
- \item Our goal is to study \textbf{seeding} for the \textbf{offline} Gsf tracking with the \textbf{new pixel detector}.
- \item Ongoing studies\footnote{\url{https://indico.cern.ch/event/613833/contributions/2646392/attachments/1486134/2307836/EGMHLT_PixelMatching_Jun30.pdf}} in HLT examine the resolution of RecHits used in Gsf Tracking.
- \item In those studies, the resolution is computed by measuring the distance between the \textbf{RecHits} and the extrapolated paths from ECAL \textbf{super-clusters} (SCs).
- \item For \textbf{offline} reconstruction, we compute residuals by comparing the position of \textbf{RecHits} and associated \textbf{SimHits}.
- \item Knowing these resolutions is important in choosing the size of search windows in the hit matching algorithm used in electron reconstruction.
- \end{itemize}
- \end{frame}
- \begin{frame}{Introduction}
- \begin{itemize}
- \item We use Rafael Lopes de Sa's analysis setup\footnote{\url{https://github.com/rafaellopesdesa/cmssw/tree/ValidationGsfTracks81X}} that is derived from the standard offline tracking reconstruction tool \texttt{TrackingNtuple} from \texttt{Validation/RecoTrack}.
- \item Source dataset: \\ {\scriptsize \texttt{/DYJetsToLL\_M-50\_TuneCUETP8M1\_13TeV-madgraphMLM-pythia8/\\ PhaseIFall16DR-FlatPU28to62HcalNZSRAW\_81X\_upgrade2017\_realistic\_v26-v1/\\ GEN-SIM-RAW}}
- \item Using Release \texttt{CMSSW\_8\_1\_0}
- \item Figures in this talk use 31790 events (could be re-run with more)
- \end{itemize}
- \end{frame}
- \begin{frame}{Gsf Electron Seeding I}
- \begin{columns}
- \begin{column}{0.75\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding1.png}
- \end{figure}
- \end{column}
- \begin{column}{0.25\textwidth}
- \begin{figure}
- \hspace{-1in}
- \vspace{-1in}
- \includegraphics[width=1.8\textwidth]{diagrams/window1.png}
- \end{figure}
- \end{column}
- \end{columns}
- \vfill
- \footnotesize{Windows from \url{https://indico.cern.ch/event/611042/contributions/2464057/attachments/1406271/2148742/ElectronTracking30112016.pdf}}
- \end{frame}
- \begin{frame}{Gsf Electron Seeding II}
- \begin{columns}
- \begin{column}{0.66\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding2.png}
- \end{figure}
- \end{column}
- \begin{column}{0.33\textwidth}
- \begin{figure}
- \hspace{-0.75in}
- \vspace{1in}
- \includegraphics[width=1.5\textwidth]{diagrams/window2.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Gsf Electron Seeding III}
- \begin{center}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding3.png}
- \end{figure}
- \end{center}
- \end{frame}
- \begin{frame}{TrackingNtuple}
- The \texttt{TrackingNtuple} format contains (among others) the below crosslinked collections
- \begin{center}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/TrackingNtuple.png}
- \end{figure}
- \end{center}
- \end{frame}
- \begin{frame}{Finding \texttt{SimHit}/\texttt{RecHit} Pairs}
- To find residuals for calculating resolutions, require a pair containing 1
- \texttt{RecHit} and 1 \texttt{SimHit}. Procedure is as follows:
- \begin{enumerate}
- \item For each \texttt{Track}, get it's \texttt{Seed} (unique)
- \item For each \texttt{RecHit} in the \texttt{Seed}, require
- \begin{itemize}
- \item It is in the specified subdetector (e.g. BPIX Layer 1)
- \item It is the 1st/2nd hit in the \texttt{Seed}.
- \item It is matched to at least one \texttt{SimHit}.
- \end{itemize}
- \item For each \texttt{RecHit} (\textbf{B}) passing the above, take the first matched
- \texttt{SimHit} (\textbf{A}).
- \item Now look through all \texttt{SimHits} associated with
- \texttt{SimTracks} associated with the original \texttt{Track}. If
- \textbf{A} exists in this set. Make a pair of \texttt{SimHit} \textbf{A}
- and \texttt{RecHit} \textbf{B}.
- \end{enumerate}
- \end{frame}
- \begin{frame}{Finding \texttt{SimHit}/\texttt{RecHit} Pairs}
- \begin{center}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/TrackingNtuple_traversal.png}
- \end{figure}
- \end{center}
- \end{frame}
- \begin{frame}{BPIX Hit 1 Resolution}
- \begin{figure}
- \centering
- \includegraphics[height=0.8\textheight]{figures/first_hits.png}
- \end{figure}
- \end{frame}
- \begin{frame}{BPIX Hit 1 Resolution vs. $\eta$}
- \begin{figure}
- \centering
- \includegraphics[height=0.8\textheight]{figures/first_hits_v_eta.png}
- \end{figure}
- \end{frame}
- \begin{frame}{BPIX Hit 2 Resolution}
- \begin{figure}
- \centering
- \includegraphics[height=0.8\textheight]{figures/second_hits.png}
- \end{figure}
- \end{frame}
- \begin{frame}{BPIX Hit 2 Resolution vs. $\eta$}
- \begin{figure}
- \centering
- \includegraphics[height=0.8\textheight]{figures/second_hits_v_eta.png}
- \end{figure}
- \end{frame}
- \begin{frame}{Resolution dependence on even/odd ladder number}
- \begin{figure}
- \centering
- \includegraphics[width=0.8\textwidth]{diagrams/dphi_v_ladder_dylan.png}
- \end{figure}
- {\small
- \begin{itemize}
- \item Above From Dylan Rankin's June 30 Presentation. (See slide 1)
- \item We have slightly different definitions of $\Delta\phi_1$, but wanted to investigate ourselves.
- \end{itemize}
- }
- \end{frame}
- \begin{frame}{Resolution dependence on even/odd ladder number}
- \begin{figure}
- \centering
- \includegraphics[height=0.8\textheight]{figures/delta_phi_z_v_ladder.png}
- \end{figure}
- \end{frame}
- \begin{frame}{Conclusions}
- \begin{itemize}
- \item Analysis machinery for offline electron RECO studies with MC truth is in place.
- \item Preliminary plots of $\Delta\phi_{1/2}$ and $\Delta z_{1/2}$ for BPIX
- Layers 1/2 are shown.
- \item Code for this analysis is here: \\ \footnotesize
- \begin{center}\url{git.fangmeier.tech/caleb/EGamma\_ElectronTrackingValidation}\end{center}
- \item next to come
- \begin{itemize}
- \item run on larger event samples (\texttt{trackingNtuples} are generated, just need to use)
- \item include FPIX
- \item investigate reasons for rec hit inefficiencies
- \item introduce triplet-based pixel matching for the seeds and repeat the studies
- \end{itemize}
- % \item What specific figures/measurements are of interest to experts?
- \end{itemize}
- \end{frame}
- \end{document}
|