main.tex 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332
  1. % rubber: module pdftex
  2. \documentclass[english,aspectratio=43,8pt]{beamer}
  3. \usepackage{graphicx}
  4. \usepackage{amssymb}
  5. \usepackage{booktabs}
  6. \usepackage{siunitx}
  7. \usepackage{subcaption}
  8. \usepackage{marvosym}
  9. \usepackage{verbatim}
  10. \usepackage[normalem]{ulem} % Needed for /sout
  11. \newcommand{\pb}{\si{\pico\barn}}%
  12. \newcommand{\fb}{\si{\femto\barn}}%
  13. \newcommand{\invfb}{\si{\per\femto\barn}}
  14. \newcommand{\GeV}{\si{\giga\electronvolt}}
  15. \hypersetup{colorlinks=true,urlcolor=blue}
  16. \usetheme[]{bjeldbak}
  17. \begin{document}
  18. \title[$e$ Seeding Validation]{Off-line Electron Seeding Validation \-- Update}
  19. \author[C. Fangmeier]{\textbf{Caleb Fangmeier} \\ Ilya Kravchenko, Greg Snow}
  20. \institute[UNL]{University of Nebraska \-- Lincoln}
  21. \date{EGamma Reco/Comm/HLT Meeting | February 16, 2018}
  22. \titlegraphic{%
  23. \begin{figure}
  24. \includegraphics[width=1in]{CMSlogo.png}\hspace{0.75in}\includegraphics[width=1in]{nebraska-n.png}
  25. \end{figure}
  26. }
  27. \begin{frame}[plain]
  28. \titlepage%
  29. \end{frame}
  30. \begin{frame}{Introduction}
  31. \begin{itemize}
  32. \item Our goal is to study \textbf{seeding} for the \textbf{off-line} GSF tracking with the \textbf{new pixel detector}.
  33. \item Specifically, we want to optimize the new pixel-matching scheme from HLT for use in off-line reconstruction.
  34. \item This Talk:
  35. \begin{itemize}
  36. \item Show the effect of linearly scaling matching windows up and down
  37. \item Show first set of \textbf{optimized} windows
  38. \item Next steps
  39. \end{itemize}
  40. \item Full set of results are available here \url{https://eg.fangmeier.tech/seeding\_studies\_2018\_02\_15\_12/output/}
  41. \end{itemize}
  42. \end{frame}
  43. \begin{frame}{$\delta \phi$ Residuals}
  44. \begin{columns}
  45. \begin{column}{0.3\textwidth}
  46. \begin{itemize}
  47. \item Distribution of $\delta \phi$ residuals for first matched hits in truth-matched seeds where the hit was in BPIX-L1
  48. \item Differential in $E_T$ of the matched super-cluster
  49. \item Red line shows the default (aka HLT) window.
  50. \end{itemize}
  51. \end{column}
  52. \begin{column}{0.7\textwidth}
  53. \begin{figure}
  54. \includegraphics[width=\textwidth]{figures/dphi_B1_H1.png}
  55. \end{figure}
  56. \end{column}
  57. \end{columns}
  58. \vspace{-0.3in}
  59. \begin{center}
  60. Cut windows are specified as functions of $E_T$ for $\delta \phi$, and $\delta R/z$ for the first, second, and third matched hits.
  61. \end{center}
  62. \end{frame}
  63. \begin{frame}{Linear Scaling of Windows}
  64. \begin{columns}
  65. \begin{column}{0.32\textwidth}
  66. \begin{itemize}
  67. \item Modified windows with uniform scaling
  68. \begin{itemize}
  69. \item x0.5(\texttt{extra-narrow})
  70. \item x1.0(\texttt{narrow})
  71. \item x2.0(\texttt{wide})
  72. \item x3.0(\texttt{extra-wide})
  73. \end{itemize}
  74. \item Uniform scaling draws out a clear curve in efficiency v. purity.
  75. \item But can we do better? Find windows with points above the curve?
  76. \end{itemize}
  77. \end{column}
  78. \begin{column}{0.7\textwidth}
  79. \begin{figure}
  80. \includegraphics[width=\textwidth]{figures/linear_scaling_tracking_roc.png}
  81. \end{figure}
  82. \end{column}
  83. \end{columns}
  84. \end{frame}
  85. \begin{frame}{Finding more optimal windows}
  86. \begin{columns}
  87. \begin{column}{0.32\textwidth}
  88. \begin{itemize}
  89. \item Figure: first-hit $\delta \phi$ 99\% contours for all relevant\footnotemark pixel regions.
  90. \item Procedure: Select a cut that tends to reasonably follow the 99\% contours in the \texttt{extra-wide} windows.
  91. \item Repeat this for each of the six windows.
  92. \item In this case, the \texttt{narrow} window seemed appropriate so this particular window was unchanged.
  93. \end{itemize}
  94. \end{column}
  95. \begin{column}{0.7\textwidth}
  96. \begin{figure}
  97. \includegraphics[width=\textwidth]{figures/dphi_hit1.png}
  98. \end{figure}
  99. \end{column}
  100. \end{columns}
  101. \footnotetext[1]{meaning the subdetectors that have a substantial portion of first hits}
  102. \end{frame}
  103. \begin{frame}{Finding more optimal windows \-- 2}
  104. \begin{columns}
  105. \begin{column}{0.32\textwidth}
  106. \begin{itemize}
  107. \item Figure: second-hit $\delta \phi$ 99\% contours for all relevant pixel regions.
  108. \item Quite low statistics in some regions + looking at tails of distribution results in high variability
  109. \item Despite this, estimate an appropriate cut to be 0.005
  110. \end{itemize}
  111. \end{column}
  112. \begin{column}{0.7\textwidth}
  113. \begin{figure}
  114. \includegraphics[width=\textwidth]{figures/dphi_hit2.png}
  115. \end{figure}
  116. \end{column}
  117. \end{columns}
  118. \end{frame}
  119. \begin{frame}{Proposed New Working Point Performance}
  120. \begin{columns}
  121. \begin{column}{0.32\textwidth}
  122. \begin{itemize}
  123. \item New working point sets slightly above the linear-scaling curve
  124. \item Hints that better performance is achievable, but it's not obvious how to achieve
  125. \item Many ways to vary parameters...
  126. \end{itemize}
  127. \end{column}
  128. \begin{column}{0.7\textwidth}
  129. \begin{figure}
  130. \includegraphics[width=\textwidth]{figures/linear_scaling_tracking_roc_w_nwp.png}
  131. \end{figure}
  132. \end{column}
  133. \end{columns}
  134. \end{frame}
  135. \begin{frame}{Outlook}
  136. \begin{itemize}
  137. \item Next steps
  138. \begin{itemize}
  139. \item Testing with an complementary dataset (currently looking at $Z\rightarrow ee$ only)
  140. \item Possibly breaking down windows sizes in $\eta$ (code supports this, but is currently unused).
  141. \end{itemize}
  142. \item Other Thoughts
  143. \begin{itemize}
  144. \item What is an appropriate working point, and what performance can be deemed adequate?
  145. \item Are there different figures-of-merit that must be balanced (cpu performance, specific background rejections.)?
  146. \end{itemize}
  147. \end{itemize}
  148. \vspace{1.5in}
  149. \end{frame}
  150. \begin{frame}
  151. \begin{center}
  152. {\Huge BACKUP}
  153. \end{center}
  154. \end{frame}
  155. \begin{frame}
  156. \begin{itemize}
  157. \item \textbf{Sim-Track \--} A track from a simulated electron originating from the luminous region of CMS (beam-spot +- 5$\sigma$)
  158. \item \textbf{ECAL-Driven Seed \--} A seed created via a matching procedure between Super-Clusters and General Tracking Seeds (Either from \texttt{ElectronSeedProducer} or \texttt{ElectronNHitSeedProducer})
  159. \item \textbf{GSF Track \--} A track from GSF-Tracking resulting from an \textbf{ECAL-Driven Seed}
  160. \item \textbf{Seeding Efficiency \--} The fraction of \textbf{Sim-Tracks} that have a matching \textbf{ECAL-Driven Seed} (based on simhit-rechit linkage)
  161. \item \textbf{GSF Tracking Efficiency \--} The fraction of \textbf{Sim-Tracks} that have a matching \textbf{GSF Track} (again, based on simhit-rechit linkage)
  162. \item \textbf{ECAL-Driven Seed Purity \--} The fraction of \textbf{ECAL-Driven Seeds} that have a matching \textbf{Sim-Track}
  163. \item \textbf{GSF Tracking Purity \--} The fraction of \textbf{GSF Tracks} that have a matching \textbf{Sim-Track}
  164. \end{itemize}
  165. \end{frame}
  166. \begin{frame}{Triplet Electron Seeding \-- Setup}
  167. \begin{columns}
  168. \begin{column}{0.45\textwidth}
  169. \begin{itemize}
  170. \item Begin with ECAL super cluster and beam spot
  171. \end{itemize}
  172. \end{column}
  173. \begin{column}{0.55\textwidth}
  174. \begin{figure}
  175. \includegraphics[width=\textwidth]{diagrams/seeding_base.png}
  176. \end{figure}
  177. \end{column}
  178. \end{columns}
  179. \end{frame}
  180. \begin{frame}{Triplet Electron Seeding - Introduce Seed}
  181. \begin{columns}
  182. \begin{column}{0.45\textwidth}
  183. \begin{itemize}
  184. \item Now, examine, one-by-one seeds from general tracking*
  185. \item Note that we do not look at all hits in an event, but rather rely on general tracking to identify seeds.
  186. \end{itemize}
  187. \vspace{0.1in}
  188. \midrule
  189. \vspace{0.1in}
  190. {\footnotesize *initialStepSeeds, highPtTripletStepSeeds, mixedTripletStepSeeds, pixelLessStepSeeds, tripletElectronSeeds, pixelPairElectronSeeds, stripPairElectronSeeds}
  191. \end{column}
  192. \begin{column}{0.55\textwidth}
  193. \begin{figure}
  194. \includegraphics[width=\textwidth]{diagrams/seeding_step1.png}
  195. \end{figure}
  196. \end{column}
  197. \end{columns}
  198. \end{frame}
  199. \begin{frame}{Triplet Electron Seeding - Match First Hit}
  200. \begin{columns}
  201. \begin{column}{0.5\textwidth}
  202. \begin{itemize}
  203. \item Using the beam spot, the SC position, and SC energy, propagate a path through the pixels.
  204. \item Next, require the first hit to be within a $\delta\phi$ and $\delta z$ window. ($\delta\phi$ and $\delta R$ for FPIX)
  205. \item $\delta z$ window for first hit is huge as SC and beam spot positions give very little information about $z$.
  206. \end{itemize}
  207. \end{column}
  208. \begin{column}{0.5\textwidth}
  209. \begin{figure}
  210. \includegraphics[width=\textwidth]{diagrams/seeding_step2.png}
  211. \end{figure}
  212. \end{column}
  213. \end{columns}
  214. \end{frame}
  215. \begin{frame}{Triplet Electron Seeding - Extrapolate Vertex}
  216. \begin{columns}
  217. \begin{column}{0.45\textwidth}
  218. \begin{itemize}
  219. \item Once we have a matched hit, use it with the SC position, to find the vertex z.
  220. \item Vertex x and y are still the beam spot's.
  221. \item Just a simple linear extrapolation.
  222. \end{itemize}
  223. \end{column}
  224. \begin{column}{0.55\textwidth}
  225. \begin{figure}
  226. \includegraphics[width=\textwidth]{diagrams/vertex_z.png}
  227. \end{figure}
  228. \end{column}
  229. \end{columns}
  230. \end{frame}
  231. \begin{frame}{Triplet Electron Seeding - Match Other Hits}
  232. \begin{columns}
  233. \begin{column}{0.45\textwidth}
  234. \begin{itemize}
  235. \item Now forget the SC position, and propagate a new track based on the vertex and first hit positions, and the SC energy.
  236. \item Progress one-by-one through the remaining hits in the seed and require each one fit within a specified window around the track.
  237. \item Quit when all hits are matched, or a hit falls outside the window. No skipping is allowed.
  238. \item However, \emph{layer} skipping is not ruled out if the original seed is missing a hit in a layer
  239. \end{itemize}
  240. \end{column}
  241. \begin{column}{0.55\textwidth}
  242. \begin{figure}
  243. \includegraphics[width=\textwidth]{diagrams/seeding_step3.png}
  244. \end{figure}
  245. \end{column}
  246. \end{columns}
  247. \end{frame}
  248. \begin{frame}{Triplet Electron Seeding - Window Sizes}
  249. \begin{columns}
  250. \begin{column}{0.55\textwidth}
  251. \begin{itemize}
  252. \item The $\delta\phi$ and $\delta R/z$ windows for each hit are defined using three parameters.
  253. \begin{itemize}
  254. \item \texttt{highEt}
  255. \item \texttt{highEtThreshold}
  256. \item \texttt{lowEtGradient}
  257. \end{itemize}
  258. \item From these, the window size is calculated as \\
  259. $\texttt{highEt} + \min(0,\texttt{Et}-\texttt{highEtThreshold})*\texttt{lowEtGradient}$.
  260. \item For the first hit, these parameters for the $\delta \phi$ window are,
  261. \begin{itemize}
  262. \item $\texttt{highEt}=0.05$
  263. \item $\texttt{highEtThreshold}=20$
  264. \item $\texttt{lowEtGradient}=-0.002$
  265. \end{itemize}
  266. \end{itemize}
  267. \end{column}
  268. \begin{column}{0.45\textwidth}
  269. \begin{figure}
  270. \includegraphics[width=\textwidth]{figures/dphi1_max.png}
  271. \end{figure}
  272. \end{column}
  273. \end{columns}
  274. \vspace{0.1in} \hrule \vspace{0.1in}
  275. These parameters can be specified for each successive hit, and in bins of $\eta$, so optimization is a challenge!
  276. \end{frame}
  277. \begin{frame}{Triplet Electron Seeding - Handle Missing Hits}
  278. \begin{columns}
  279. \begin{column}{0.45\textwidth}
  280. \begin{itemize}
  281. \item Finally, calculate the expected number of hits based on the number of working pixel modules the track passes through.
  282. \item Require exact$^1$ number of matched hits depending on the expected number of hits.
  283. \begin{itemize}
  284. \item If $N_{\textrm{exp}}=4$, require $N_{\textrm{match}}=3$
  285. \item If $N_{\textrm{exp}}<4$, require $N_{\textrm{match}}=2$
  286. \end{itemize}
  287. \item If the seed passes all requirements, all information, including
  288. \begin{itemize}
  289. \item Super cluster
  290. \item Original Seed
  291. \item Residuals (For both charge hypotheses)
  292. \end{itemize}
  293. are wrapped up and sent downstream to GSF tracking
  294. \end{itemize}
  295. \end{column}
  296. \begin{column}{0.55\textwidth}
  297. \begin{figure}
  298. \includegraphics[width=\textwidth]{diagrams/seeding_step4.png}
  299. \end{figure}
  300. \end{column}
  301. \end{columns}
  302. \vspace{0.1in} \hrule \vspace{0.1in}
  303. {\footnotesize $^1$Exact, rather than minimum to deal with duplicate seeds in input collection. Could switch to minimum with offline cross-cleaned seeds.}
  304. \end{frame}
  305. \end{document}