123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- #!/usr/bin/env python
- import sys
- import matplotlib.pyplot as plt
- from filval.result_set import ResultSet
- from filval.histogram_utils import hist, hist2d, hist_slice, hist_add
- from filval.plotter import (decl_plot, save_plots, hist_plot, hist2d_plot, Plot)
- @decl_plot
- def plot_residual(rs, var, layer, hit, projection=None, display_layer=True):
- r'''
- Plots of $\Delta \phi$, $\Delta z$, or $\Delta r$ (vs $\eta$) between RecHit
- and SimHit for the nth hit in the matched seed.
- '''
- h = {('z', 'B1', 1): rs.dz_v_eta_first_hits_in_B1,
- ('z', 'B2', 1): rs.dz_v_eta_first_hits_in_B2,
- ('phi', 'B1', 1): rs.dphi_v_eta_first_hits_in_B1,
- ('phi', 'B2', 1): rs.dphi_v_eta_first_hits_in_B2,
- ('z', 'B2', 2): rs.dz_v_eta_second_hits_in_B2,
- ('z', 'B3', 2): rs.dz_v_eta_second_hits_in_B3,
- ('phi', 'B2', 2): rs.dphi_v_eta_second_hits_in_B2,
- ('phi', 'B3', 2): rs.dphi_v_eta_second_hits_in_B3,
- }[(var, layer, hit)]
- varlabel = {('z', 1): r"$\Delta z_1^{\textrm{sim}}(\mu \mathrm{m})$",
- ('z', 2): r"$\Delta z_2^{\textrm{sim}}(\mu \mathrm{m})$",
- ('phi', 1): r"$\Delta \phi_1^{\textrm{sim}}(\mathrm{millirad})$",
- ('phi', 2): r"$\Delta \phi_2^{\textrm{sim}}(\mathrm{millirad})$"
- }[(var, hit)]
- scale = {'z': 10**4, # cm -> um
- 'phi': 10**3 # rad -> millirad
- }[var]
- if projection == 'y': # projecting onto var axis
- h = h.ProjectionY()
- hist_plot(hist(h, rescale_x=scale), xlabel=varlabel, title='Layer - ' + layer)
- elif projection == 'x': # projecting onto eta axis
- h = h.ProjectionX()
- hist_plot(hist(h), xlabel=r'$\eta$', title=layer)
- else:
- hist2d_plot(hist2d(h, rescale_y=scale), ylabel=varlabel, xlabel=r"$\eta$")
- # if display_layer:
- # plt.text(0.9, 0.9, layer,
- # bbox={'facecolor': 'white', 'alpha': 0.7},
- # transform=plt.gca().transAxes)
- @decl_plot
- def plot_residuals_v_ladder(rs, var, layer):
- even, odd = {('phi', 'B1'): (rs.dphi_v_eta_first_hits_in_B1_even_ladder, rs.dphi_v_eta_first_hits_in_B1_odd_ladder),
- ('phi', 'B2'): (rs.dphi_v_eta_first_hits_in_B2_even_ladder, rs.dphi_v_eta_first_hits_in_B2_odd_ladder),
- ('z', 'B1'): (rs.dz_v_eta_first_hits_in_B1_even_ladder, rs.dz_v_eta_first_hits_in_B1_odd_ladder),
- ('z', 'B2'): (rs.dz_v_eta_first_hits_in_B2_even_ladder, rs.dz_v_eta_first_hits_in_B2_odd_ladder),
- }[(var, layer)]
- unit = {'phi': 'urad',
- 'z': 'um',
- }[var]
- fmt_var = {'phi': r'\phi',
- 'z': 'z',
- }[var]
- scale = {'phi': 10**3,
- 'z': 10**4,
- }[var]
- xlabel = {'phi': r'$\Delta \phi_1$(rad)',
- 'z': r"$\Delta z_1$(cm)",
- }[var]
- even = even.ProjectionY()
- odd = odd.ProjectionY()
- hist_plot(hist(even), include_errors=True, label='even ladders')
- hist_plot(hist(odd), include_errors=True, color='r', label='odd ladders')
- plt.xlabel(xlabel)
- even_mean = even.GetMean()*scale
- odd_mean = odd.GetMean()*scale
- txt = r'$ \hat{{\Delta {0} }}_{{1,\textrm{{ {1} }} }}={2:4.2g}${3}'
- plt.text(0.05, .8, txt.format(fmt_var, 'odd', odd_mean, unit), transform=plt.gca().transAxes)
- plt.text(0.05, .7, txt.format(fmt_var, 'even', even_mean, unit), transform=plt.gca().transAxes)
- plt.legend()
- @decl_plot
- def sc_extrapolation_first(rs, var, layer, hit, even_odd, log=False, norm=None, cut=None, display_layer=True):
- ''' Raphael's plots '''
- # def preproc(h):
- # return hist_slice(hist(h.ProjectionY()), (-0.07, 0.07))
- # hist_plot(hist(rs.sc_first_hits_in_B1_dz.ProjectionY()),
- # include_errors=errors,
- # norm=norm,
- # log=log,
- # xlabel=r"$\Delta z_1$(cm)",
- # title="BPIX - Layer 1")
- h = {('phi', 'B1', 1, 'either'): (rs.sc_first_hits_in_B1_dphi_even, rs.sc_first_hits_in_B1_dphi_odd),
- ('phi', 'B2', 1, 'either'): (rs.sc_first_hits_in_B2_dphi_even, rs.sc_first_hits_in_B1_dphi_odd),
- ('z', 'B1', 1, 'either'): (rs.sc_first_hits_in_B1_dz_even, rs.sc_first_hits_in_B1_dz_odd),
- ('z', 'B2', 1, 'either'): (rs.sc_first_hits_in_B2_dz_even, rs.sc_first_hits_in_B2_dz_odd),
- ('phi', 'B2', 2, 'either'): (rs.sc_second_hits_in_B2_dphi_even, rs.sc_second_hits_in_B2_dphi_odd),
- ('phi', 'B3', 2, 'either'): (rs.sc_second_hits_in_B3_dphi_even, rs.sc_second_hits_in_B3_dphi_odd),
- ('z', 'B2', 2, 'either'): (rs.sc_second_hits_in_B2_dz_even, rs.sc_second_hits_in_B2_dz_odd),
- ('z', 'B3', 2, 'either'): (rs.sc_second_hits_in_B3_dz_even, rs.sc_second_hits_in_B3_dz_odd),
- ('phi', 'B1', 1, 'even'): rs.sc_first_hits_in_B1_dphi_even,
- ('phi', 'B2', 1, 'even'): rs.sc_first_hits_in_B2_dphi_even,
- ('z', 'B1', 1, 'even'): rs.sc_first_hits_in_B1_dz_even,
- ('z', 'B2', 1, 'even'): rs.sc_first_hits_in_B2_dz_even,
- ('phi', 'B2', 2, 'even'): rs.sc_second_hits_in_B2_dphi_even,
- ('phi', 'B3', 2, 'even'): rs.sc_second_hits_in_B3_dphi_even,
- ('z', 'B2', 2, 'even'): rs.sc_second_hits_in_B2_dz_even,
- ('z', 'B3', 2, 'even'): rs.sc_second_hits_in_B3_dz_even,
- ('phi', 'B1', 1, 'odd'): rs.sc_first_hits_in_B1_dphi_odd,
- ('phi', 'B2', 1, 'odd'): rs.sc_first_hits_in_B2_dphi_odd,
- ('z', 'B1', 1, 'odd'): rs.sc_first_hits_in_B1_dz_odd,
- ('z', 'B2', 1, 'odd'): rs.sc_first_hits_in_B2_dz_odd,
- ('phi', 'B2', 2, 'odd'): rs.sc_second_hits_in_B2_dphi_odd,
- ('phi', 'B3', 2, 'odd'): rs.sc_second_hits_in_B3_dphi_odd,
- ('z', 'B2', 2, 'odd'): rs.sc_second_hits_in_B2_dz_odd,
- ('z', 'B3', 2, 'odd'): rs.sc_second_hits_in_B3_dz_odd,
- }[(var, layer, hit, even_odd)]
- scale = {'phi': 10**3,
- 'z': 10**4,
- }[var]
- varlabel = {('z', 1): r"$\Delta z_1(\mu \mathrm{m})$",
- ('z', 2): r"$\Delta z_2(\mu \mathrm{m})$",
- ('phi', 1): r"$\Delta \phi_1(\mathrm{millirad})$",
- ('phi', 2): r"$\Delta \phi_2(\mathrm{millirad})$"
- }[(var, hit)]
- try:
- h = hist(h.ProjectionY(), rescale_x=scale)
- except AttributeError:
- h = hist_add(hist(h[0].ProjectionY(), rescale_x=scale), hist(h[1].ProjectionY(), rescale_x=scale))
- if cut:
- h = hist_slice(h, (-cut, cut))
- hist_plot(h,
- include_errors=True,
- log=log,
- norm=norm,
- xlabel=varlabel,
- title='Layer - ' + layer)
- # if display_layer:
- # plt.text(0.9, 0.9, layer,
- # bbox={'facecolor': 'white', 'alpha': 0.7},
- # transform=plt.gca().transAxes)
- def generate_dashboard(plots):
- from jinja2 import Environment, PackageLoader, select_autoescape
- from os.path import join
- from urllib.parse import quote
- env = Environment(
- loader=PackageLoader('plots', 'templates'),
- autoescape=select_autoescape(['htm', 'html', 'xml']),
- )
- env.globals.update({'quote': quote,
- 'enumerate': enumerate,
- 'zip': zip,
- })
- def render_to_file(template_name, **kwargs):
- with open(join('output', template_name), 'w') as tempout:
- template = env.get_template(template_name)
- tempout.write(template.render(**kwargs))
- def get_by_n(l, n=2):
- l = list(l)
- while l:
- yield l[:n]
- l = l[n:]
- render_to_file('dashboard.htm', plots=get_by_n(plots, 3),
- outdir="figures/")
- if __name__ == '__main__':
- # First create a ResultSet object which loads all of the objects from output.root
- # into memory and makes them available as attributes
- if len(sys.argv) != 2:
- raise ValueError("please supply root file")
- rs = ResultSet("DY2LL", sys.argv[1])
- # Next, declare all of the (sub)plots that will be assembled into full
- # figures later
- dphi1_v_eta_B1 = (plot_residual, (rs, 'phi', 'B1', 1), {})
- dphi1_v_eta_B2 = (plot_residual, (rs, 'phi', 'B2', 1), {})
- dz1_v_eta_B1 = (plot_residual, (rs, 'z', 'B1', 1), {})
- dz1_v_eta_B2 = (plot_residual, (rs, 'z', 'B2', 1), {})
- dphi2_v_eta_B2 = (plot_residual, (rs, 'phi', 'B2', 2), {})
- dphi2_v_eta_B3 = (plot_residual, (rs, 'phi', 'B3', 2), {})
- dz2_v_eta_B2 = (plot_residual, (rs, 'z', 'B2', 2), {})
- dz2_v_eta_B3 = (plot_residual, (rs, 'z', 'B3', 2), {})
- projectY = {'projection': 'y'}
- dphi1_B1 = (plot_residual, (rs, 'phi', 'B1', 1), projectY)
- dphi1_B2 = (plot_residual, (rs, 'phi', 'B2', 1), projectY)
- dz1_B1 = (plot_residual, (rs, 'z', 'B1', 1), projectY)
- dz1_B2 = (plot_residual, (rs, 'z', 'B2', 1), projectY)
- dphi2_B2 = (plot_residual, (rs, 'phi', 'B2', 2), projectY)
- dphi2_B3 = (plot_residual, (rs, 'phi', 'B3', 2), projectY)
- dz2_B2 = (plot_residual, (rs, 'z', 'B2', 2), projectY)
- dz2_B3 = (plot_residual, (rs, 'z', 'B3', 2), projectY)
- projectX = {'projection': 'x'}
- eta1_B1 = (plot_residual, (rs, 'phi', 'B1', 1), projectX)
- eta1_B2 = (plot_residual, (rs, 'phi', 'B2', 1), projectX)
- eta2_B2 = (plot_residual, (rs, 'phi', 'B2', 2), projectX)
- eta2_B3 = (plot_residual, (rs, 'phi', 'B3', 2), projectX)
- dphi1_v_ladder_B1 = (plot_residuals_v_ladder, (rs, 'phi', 'B1'), {})
- dphi1_v_ladder_B2 = (plot_residuals_v_ladder, (rs, 'phi', 'B2'), {})
- dz1_v_ladder_B1 = (plot_residuals_v_ladder, (rs, 'z', 'B1'), {})
- dz1_v_ladder_B2 = (plot_residuals_v_ladder, (rs, 'z', 'B2'), {})
- opts = {'log': False, 'norm': None, 'cut': 150}
- dphi1_sc_ex_B1 = (sc_extrapolation_first, (rs, 'phi', 'B1', 1, 'either'), opts)
- dphi1_sc_ex_B2 = (sc_extrapolation_first, (rs, 'phi', 'B2', 1, 'either'), opts)
- dz1_sc_ex_B1 = (sc_extrapolation_first, (rs, 'z', 'B1', 1, 'either'), {})
- dz1_sc_ex_B2 = (sc_extrapolation_first, (rs, 'z', 'B2', 1, 'either'), {})
- dphi2_sc_ex_B1 = (sc_extrapolation_first, (rs, 'phi', 'B1', 2, 'either'), opts)
- dphi2_sc_ex_B2 = (sc_extrapolation_first, (rs, 'phi', 'B2', 2, 'either'), opts)
- dz2_sc_ex_B1 = (sc_extrapolation_first, (rs, 'z', 'B1', 2, 'either'), {})
- dz2_sc_ex_B2 = (sc_extrapolation_first, (rs, 'z', 'B2', 2, 'either'), {})
- dphi1_sc_ex_B1_even = (sc_extrapolation_first, (rs, 'phi', 'B1', 1, 'even'), opts)
- dphi1_sc_ex_B2_even = (sc_extrapolation_first, (rs, 'phi', 'B2', 1, 'even'), opts)
- dz1_sc_ex_B1_even = (sc_extrapolation_first, (rs, 'z', 'B1', 1, 'even'), {})
- dz1_sc_ex_B2_even = (sc_extrapolation_first, (rs, 'z', 'B2', 1, 'even'), {})
- dphi1_sc_ex_B1_odd = (sc_extrapolation_first, (rs, 'phi', 'B1', 1, 'odd'), opts)
- dphi1_sc_ex_B2_odd = (sc_extrapolation_first, (rs, 'phi', 'B2', 1, 'odd'), opts)
- dz1_sc_ex_B1_odd = (sc_extrapolation_first, (rs, 'z', 'B1', 1, 'odd'), {})
- dz1_sc_ex_B2_odd = (sc_extrapolation_first, (rs, 'z', 'B2', 1, 'odd'), {})
- # Now assemble the plots into figures.
- plots = [
- # Plot([[dphi1_v_eta_B1, dphi1_v_eta_B2],
- # [dz1_v_eta_B1, dz1_v_eta_B2 ]],
- # 'res1_v_eta'),
- # Plot([[dphi2_v_eta_B2, dphi2_v_eta_B3],
- # [dz2_v_eta_B2, dz2_v_eta_B3 ]],
- # 'res2_v_eta'),
- # Plot([[dphi1_B1, dphi1_B2],
- # [dz1_B1, dz1_B2 ]],
- # 'res1'),
- # Plot([[eta1_B1, eta1_B2],
- # [eta2_B2, eta2_B3 ]],
- # 'eta_dist'),
- # Plot([[dphi2_B2, dphi2_B3],
- # [dz2_B2, dz2_B3 ]],
- # 'res2'),
- # Plot([[dphi1_v_ladder_B1, dphi1_v_ladder_B2],
- # [dz1_v_ladder_B1, dz1_v_ladder_B2]],
- # 'res_v_ladder'),
- # Plot([[dphi1_sc_ex_B1, dphi1_sc_ex_B2],
- # [dz1_sc_ex_B1, dz1_sc_ex_B2]],
- # 'sc_ex_1'),
- # Plot([[dphi1_sc_ex_B1_even, dphi1_sc_ex_B2_even],
- # [dz1_sc_ex_B1_even, dz1_sc_ex_B2_even]],
- # 'sc_ex_1_even'),
- # Plot([[dphi1_sc_ex_B1_odd, dphi1_sc_ex_B2_odd],
- # [dz1_sc_ex_B1_odd, dz1_sc_ex_B2_odd]],
- # 'sc_ex_1_odd'),
- # Plot([[(dphi1_sc_ex_B1_odd, dphi1_sc_ex_B1_even), "FL"],
- # [dz1_sc_ex_B1_odd, dz1_sc_ex_B1_even]],
- # 'sc_ex_1_odd_v_even'),
- Plot([[dphi1_sc_ex_B1],
- [dphi1_B1]],
- 'sc_ex_v_sim_phi1_B1'),
- Plot([[dphi1_sc_ex_B2],
- [dphi1_B2]],
- 'sc_ex_v_sim_phi1_B2'),
- Plot([[dphi2_sc_ex_B2],
- [dphi2_B2]],
- 'sc_ex_v_sim_phi2_B2'),
- Plot([[dz1_sc_ex_B1],
- [dz1_B1]],
- 'sc_ex_v_sim_z1_B1'),
- Plot([[dz2_sc_ex_B2],
- [dz2_B2]],
- 'sc_ex_v_sim_z2_B2'),
- Plot([[dz1_sc_ex_B1],
- [dz1_sc_ex_B1_even],
- [dz1_sc_ex_B1_odd]],
- 'even_odd'),
- ]
- # Finally, render and save the plots and generate the html+bootstrap
- # dashboard to view them
- save_plots(plots)
- generate_dashboard(plots)
|