123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307 |
- % rubber: module pdftex
- \documentclass[english,aspectratio=43,8pt]{beamer}
- \usepackage{graphicx}
- \usepackage{amssymb}
- \usepackage{booktabs}
- \usepackage{siunitx}
- \usepackage{subcaption}
- \usepackage{marvosym}
- \usepackage{verbatim}
- \usepackage[normalem]{ulem} % Needed for /sout
- \newcommand{\pb}{\si{\pico\barn}}%
- \newcommand{\fb}{\si{\femto\barn}}%
- \newcommand{\invfb}{\si{\per\femto\barn}}
- \newcommand{\GeV}{\si{\giga\electronvolt}}
- \hypersetup{colorlinks=true,urlcolor=blue}
- \usetheme[]{bjeldbak}
- \newcommand{\backupbegin}{%
- \newcounter{finalframe}
- \setcounter{finalframe}{\value{framenumber}}
- }
- \newcommand{\backupend}{%
- \setcounter{framenumber}{\value{finalframe}}
- }
- \begin{document}
- \title[$e$ Seeding Validation]{Offline Electron Seeding Validation \-- Update}
- \author[C. Fangmeier]{\textbf{Caleb Fangmeier} \\ Ilya Kravchenko, Greg Snow}
- \institute[UNL]{University of Nebraska \-- Lincoln}
- \date{EGM general meeting \textbf{CMS week} | April 18, 2018}
- \titlegraphic{%
- \begin{figure}
- \includegraphics[width=1in]{CMSlogo.png}\hspace{0.75in}\includegraphics[width=1in]{nebraska-n.png}
- \end{figure}
- }
- \begin{frame}[plain]
- \titlepage%
- \end{frame}
- \begin{frame}{Introduction}
- \begin{itemize}
- \item Our goal is to study \textbf{seeding} for the \textbf{offline} GSF tracking with the \textbf{new pixel detector}.
- \item Specifically, we want to optimize the new pixel-matching scheme from HLT for use in off-line reconstruction.
- \item This Talk:
- \begin{itemize}
- \item Show performance comparison between old seeding two working points of the new seeding in fake-rich environment
- \begin{itemize}
- \item New Seeding working points: \texttt{narrow} (HLT default settings), and \texttt{wide} (double window sizes with respect to \texttt{narrow})
- \end{itemize}
- \item Show alternative efficiency/purity measurements using $\Delta R$ truth-matching between \texttt{SimTracks} and \texttt{GSFTracks}
- \end{itemize}
- \end{itemize}
- \end{frame}
- \begin{frame}{N-Hit Electron Seeding}
- \begin{columns}
- \begin{column}{0.5\textwidth}
- {\small
- \begin{enumerate}
- \item Using the beam spot, the SC position, and SC energy, propagate a path through the pixels.
- \item Require the first hit to be within a $\delta\phi$ and $\delta z$ window. ($\delta\phi$ and $\delta R$ for FPIX)
- \item $\delta z$ window for first hit is huge as SC and beam spot positions give very little information about $z$.
- \item Forget the SC position, and propagate a new track based on the vertex and first hit positions, and the SC energy.
- \item Progress one-by-one through the remaining hits in the seed and require each one fit within a specified window around the track.
- \item Quit when all hits are matched, or a hit falls outside the window. No skipping is allowed.
- \end{enumerate}
- }
- \end{column}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- \includegraphics[width=0.9\textwidth]{../common/diagrams/seeding_step2.png}
- \end{figure}
- \begin{figure}
- \includegraphics[width=0.9\textwidth]{../common/diagrams/seeding_step3.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Definitions}
- \begin{itemize}
- \item \textbf{Sim-Track \--} A track from a simulated electron originating from the luminous region of CMS (beam-spot +- 5$\sigma$)
- \item \textbf{ECAL-Driven Seed \--} A seed created via a matching procedure between Super-Clusters and General Tracking Seeds (Either from \texttt{ElectronSeedProducer} or \texttt{ElectronNHitSeedProducer})
- \item \textbf{GSF Track \--} A track from GSF-Tracking resulting from an \textbf{ECAL-Driven Seed}
- % \item \textbf{Seeding Efficiency \--} The fraction of \textbf{Sim-Tracks} that have a matching \textbf{ECAL-Driven Seed} (based on simhit-rechit linkage or $\Delta R$ matching)
- \item \textbf{GSF Tracking Efficiency \--} The fraction of \textbf{Sim-Tracks} that have a matching \textbf{GSF Track} (again, based on simhit-rechit linkage or $\Delta R$ matching)
- % \item \textbf{ECAL-Driven Seed Purity \--} The fraction of \textbf{ECAL-Driven Seeds} that have a matching \textbf{Sim-Track}
- \item \textbf{GSF Tracking Purity \--} The fraction of \textbf{GSF Tracks} that have a matching \textbf{Sim-Track}
- \end{itemize}
- \end{frame}
- \begin{frame}{Previous status-quo}
- \begin{columns}
- \begin{column}{0.45\textwidth}
- {\small
- \begin{itemize}
- \item In a previous presentation\footnotemark, I showed efficiency vs. purity for
- \begin{itemize}
- \item Old pair-match seeding (\texttt{ElectronSeedProducer})
- \item New triplet seeding (\texttt{ElectronNHitSeedProducer}) for several choices of matching windows.
- \end{itemize}
- \item Performance of new seeding at the \texttt{wide} working point was comparable to old seeding in low-fake ($Z\rightarrow e^+e^-$) environment
- \item Needed to validate performance in a high fake environment.
- \end{itemize}
- }
- \end{column}
- \begin{column}{0.6\textwidth}
- \begin{figure}
- \includegraphics[width=0.9\textwidth]{../common/figures/tracking_roc_curves_linear_plus_old_hoe.png}
- \end{figure}
- \end{column}
- \end{columns}
- \footnotetext[1]{\tiny \url{https://indico.cern.ch/event/697077/contributions/2936039/attachments/1618649/2573874/main.pdf}}
- \end{frame}
- \begin{frame}{Relative Performance - GSF Tracking Efficiency}
- \begin{columns}
- \begin{column}{0.5\textwidth}
- \begin{itemize}
- \item Figure shows GSF Tracking efficiency vs kinematic variables of the electron \texttt{SimTrack}
- \item Efficiency is more or less the same for both DY and $t\bar{t}$ environments and for both algorithms and working points.
- \item Largest (statistically significant) differences appear at low $p_T$ and in the barrel/endcap transition region.
- \end{itemize}
- \end{column}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- GSF Tracking Efficiency
- \includegraphics[width=1.0\textwidth]{live_figures/tracking_eff_all.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Relative Performance - GSF Track Purity}
- \begin{columns}
- \begin{column}{0.5\textwidth}
- \begin{itemize}
- \item Figure shows GSF Tracking purity vs kinematic variables of the \texttt{GSFTrack}
- \item Clearly purity is affected by the higher fake environment in the $t\bar{t}$ sample.
- \item Note how the \texttt{narrow} working point of the new seeding (green) has significantly better purity than the \texttt{wide} working point or the old seeding.
- \item Purity loss at high $p_T$ is a feature of the shared-hits matching between \texttt{SimTracks} and \texttt{GSFTracks}.
- \end{itemize}
- \end{column}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- GSF Tracking Purity
- \includegraphics[width=1.0\textwidth]{live_figures/tracking_pur_all.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{$\Delta R$ Matching}
- \begin{columns}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- GSF Tracking Efficiency ($\Delta R$ Matched)
- \includegraphics[width=1.0\textwidth]{live_figures/tracking_eff_all_dR.png}
- \end{figure}
- \end{column}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- GSF Tracking Purity ($\Delta R$ Matched)
- \includegraphics[width=1.0\textwidth]{live_figures/tracking_pur_all_dR.png}
- \end{figure}
- \end{column}
- \end{columns}
- \begin{itemize}
- \item Previous efficiency/purity definitions based on shared tracker hits between \texttt{SimTracks} and \texttt{GSFTracks}.
- \item An alternative is to use simple $\Delta R<0.2$ matching.
- \item Overall numbers improve and purity no longer drops at high $p_T$.
- \end{itemize}
- \end{frame}
- \begin{frame}{Overall Performance}
- \begin{center}
- Integrating over all tracks with $p_T>20$GeV and $\eta<2.4$ yields the performance numbers below.
- \begin{table}[]
- \centering
- \begin{tabular}{@{}llrr} \toprule
- Sample & Algo & Efficiency ($\Delta R$ Matched) & Purity ($\Delta R$ Matched) \\ \midrule
- $Z\rightarrow ee$ & \texttt{old-seeding} & $96.08\pm0.28\%$ & $99.54\pm0.29\%$ \\
- & \texttt{narrow} & $94.49\pm0.28\%$ & $99.72\pm0.29\%$ \\
- & \texttt{wide} & $96.00\pm0.28\%$ & $99.60\pm0.29\%$ \\
- $t\bar{t}$ & \texttt{old-seeding} & $94.84\pm0.77\%$ & $57.49\pm0.60\%$ \\
- & \texttt{narrow} & $93.54\pm0.79\%$ & $65.84\pm0.67\%$ \\
- & \texttt{wide} & $95.06\pm0.77\%$ & $59.52\pm0.61\%$ \\
- \end{tabular}
- \end{table}
- \begin{itemize}
- \item The HLT default settings (\texttt{narrow}) of the new pixel matching
- scheme yield non-trivially better purity at the loss of some efficiency
- with respect to both the old seeding and the \texttt{wide} working point.
- \item The \texttt{wide} working point of the new seeding matches the
- \texttt{old-seeding} within errors except for purity is $\approx 2$\%
- better in the $t\bar{t}$ sample
- \end{itemize}
- \end{center}
- \end{frame}
- \begin{frame}{Conclusions \& Outlook}
- \begin{itemize}
- \item The new seeding algorithm has been verified to perform as well as,
- and in some cases better, than the current pair seeding based on MC
- studies in both low and high purity environments.
- \item Now the question is which working point (\texttt{wide} or \texttt{narrow}) is preferable?
- \item Unless there are objections, propose to move forward with implementing the new algorithm as the default in the next available CMSSW release.
- \end{itemize}
- \end{frame}
- \appendix
- \backupbegin
- \begin{frame}
- \begin{center}
- {\Huge BACKUP}
- \end{center}
- \end{frame}
- \begin{frame}{Overall Performance}
- \begin{columns}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- GSF Tracking Performance (Hit Matched)
- \includegraphics[width=1.0\textwidth]{live_figures/tracking_roc_curve.png}
- \end{figure}
- \end{column}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- GSF Tracking Performance ($\Delta R$ Matched)
- \includegraphics[width=1.0\textwidth]{live_figures/tracking_roc_curve_dR.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Matching Window Parameters}
- \begin{table}[]
- \centering
- \begin{tabular}{@{}llrrrr@{}}
- \toprule
- & & \textbf{extra-narrow} & \textbf{narrow(HLT)} & \textbf{wide} & \textbf{extra-wide} \\ \midrule
- Hit 1 & dPhiMaxHighEt & \textbf{0.025} & \textbf{0.05} & \textbf{0.1} & \textbf{0.15} \\
- & dPhiMaxHighEtThres & 20.0 & 20.0 & 20.0 & 20.0 \\
- & dPhiMaxLowEtGrad & -0.002 & -0.002 & -0.002 & -0.002 \\
- & dRzMaxHighEt & 9999.0 & 9999.0 & 9999.0 & 9999.0 \\
- & dRzMaxHighEtThres & 0.0 & 0.0 & 0.0 & 0.0 \\
- & dRzMaxLowEtGrad & 0.0 & 0.0 & 0.0 & 0.0 \\ \midrule
- Hit 2 & dPhiMaxHighEt & \textbf{0.0015} & \textbf{0.003} & \textbf{0.006} & \textbf{0.009} \\
- & dPhiMaxHighEtThres & 0.0 & 0.0 & 0.0 & 0.0 \\
- & dPhiMaxLowEtGrad & 0.0 & 0.0 & 0.0 & 0.0 \\
- & dRzMaxHighEt & \textbf{0.025} & \textbf{0.05} & \textbf{0.1} & \textbf{0.15} \\
- & dRzMaxHighEtThres & 30.0 & 30.0 & 30.0 & 30.0 \\
- & dRzMaxLowEtGrad & -0.002 & -0.002 & -0.002 & -0.002 \\ \midrule
- Hit 3+ & dPhiMaxHighEt & \textbf{0.0015} & \textbf{0.003} & \textbf{0.006} & \textbf{0.009} \\
- & dPhiMaxHighEtThres & 0.0 & 0.0 & 0.0 & 0.0 \\
- & dPhiMaxLowEtGrad & 0.0 & 0.0 & 0.0 & 0.0 \\
- & dRzMaxHighEt & \textbf{0.025} & \textbf{0.05} & \textbf{0.1} & \textbf{0.15} \\
- & dRzMaxHighEtThres & 30.0 & 30.0 & 30.0 & 30.0 \\
- & dRzMaxLowEtGrad & -0.002 & -0.002 & -0.002 & -0.002 \\ \bottomrule
- \end{tabular}
- \end{table}
- \centering
- \texttt{NHit} Seeding window parameters. Bold designates modified values.
- \end{frame}
- \begin{frame}{Overall Performance - Hit-Matching}
- \begin{center}
- Integrating over all tracks with $p_T>20$GeV and $\eta<2.4$ yields the performance numbers below.
- \begin{table}[]
- \centering
- \begin{tabular}{@{}llrr} \toprule
- Sample & Algo & Efficiency (Hit Matched) & Purity (Hit Matched) \\ \midrule
- $Z\rightarrow ee$ & \texttt{old-seeding} & $88.05\pm0.28\%$ & $90.30\pm0.29\%$ \\
- & \texttt{narrow} & $86.63\pm0.28\%$ & $90.69\pm0.29\%$ \\
- & \texttt{wide} & $88.01\pm0.28\%$ & $90.43\pm0.29\%$ \\
- $t\bar{t}$ & \texttt{old-seeding} & $88.06\pm0.77\%$ & $52.35\pm0.60\%$ \\
- & \texttt{narrow} & $86.89\pm0.79\%$ & $60.56\pm0.67\%$ \\
- & \texttt{wide} & $88.30\pm0.77\%$ & $54.38\pm0.61\%$ \\
- \end{tabular}
- \end{table}
- Note that the \texttt{wide} working point of the new seeding matches the \texttt{old-seeding} within errors except for purity is $\approx 2$\% better in the $t\bar{t}$ sample.
- \end{center}
- \end{frame}
- \begin{frame}{Samples}
- \begin{itemize}
- \item {\tiny /ZToEE\_NNPDF30\_13TeV-powheg\_M\_120\_200/RunIISummer17DRStdmix-NZSFlatPU28to62\_92X\_upgrade2017\_realistic\_v10-v1}
- \item {\tiny /TT\_TuneCUETP8M2T4\_13TeV-powheg-pythia8/RunIISummer17DRStdmix-NZSFlatPU28to62\_92X\_upgrade2017\_realistic\_v10-v2}
- \end{itemize}
- \end{frame}
- \backupend
- \end{document}
|