eff_plots.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. #!/usr/bin/env python
  2. from itertools import product
  3. import numpy as np
  4. import matplotlib.pyplot as plt
  5. from uproot import open as root_open
  6. from matplottery.utils import Hist1D, Hist2D, to_html_table
  7. from matplottery.plotter import set_defaults, plot_2d
  8. import matplotboard as mpb
  9. matching_cuts = {
  10. 'new-extra-narrow': [
  11. dict(
  12. dPhiMaxHighEt=0.025,
  13. dPhiMaxHighEtThres=20.0,
  14. dPhiMaxLowEtGrad=-0.002,
  15. dRzMaxHighEt=9999.0,
  16. dRzMaxHighEtThres=0.0,
  17. dRzMaxLowEtGrad=0.0,
  18. ),
  19. dict(
  20. dPhiMaxHighEt=0.0015,
  21. dPhiMaxHighEtThres=0.0,
  22. dPhiMaxLowEtGrad=0.0,
  23. dRzMaxHighEt=0.025,
  24. dRzMaxHighEtThres=30.0,
  25. dRzMaxLowEtGrad=-0.002,
  26. ),
  27. dict(
  28. dPhiMaxHighEt=0.0015,
  29. dPhiMaxHighEtThres=0.0,
  30. dPhiMaxLowEtGrad=0.0,
  31. dRzMaxHighEt=0.025,
  32. dRzMaxHighEtThres=30.0,
  33. dRzMaxLowEtGrad=-0.002,
  34. )
  35. ],
  36. 'new-default': [
  37. dict(
  38. dPhiMaxHighEt=0.05,
  39. dPhiMaxHighEtThres=20.0,
  40. dPhiMaxLowEtGrad=-0.002,
  41. dRzMaxHighEt=9999.0,
  42. dRzMaxHighEtThres=0.0,
  43. dRzMaxLowEtGrad=0.0,
  44. ),
  45. dict(
  46. dPhiMaxHighEt=0.003,
  47. dPhiMaxHighEtThres=0.0,
  48. dPhiMaxLowEtGrad=0.0,
  49. dRzMaxHighEt=0.05,
  50. dRzMaxHighEtThres=30.0,
  51. dRzMaxLowEtGrad=-0.002,
  52. ),
  53. dict(
  54. dPhiMaxHighEt=0.003,
  55. dPhiMaxHighEtThres=0.0,
  56. dPhiMaxLowEtGrad=0.0,
  57. dRzMaxHighEt=0.05,
  58. dRzMaxHighEtThres=30.0,
  59. dRzMaxLowEtGrad=-0.002,
  60. )
  61. ],
  62. 'new-wide': [
  63. dict(
  64. dPhiMaxHighEt=0.10,
  65. dPhiMaxHighEtThres=20.0,
  66. dPhiMaxLowEtGrad=-0.002,
  67. dRzMaxHighEt=9999.0,
  68. dRzMaxHighEtThres=0.0,
  69. dRzMaxLowEtGrad=0.0,
  70. ),
  71. dict(
  72. dPhiMaxHighEt=0.006,
  73. dPhiMaxHighEtThres=0.0,
  74. dPhiMaxLowEtGrad=0.0,
  75. dRzMaxHighEt=0.10,
  76. dRzMaxHighEtThres=30.0,
  77. dRzMaxLowEtGrad=-0.002,
  78. ),
  79. dict(
  80. dPhiMaxHighEt=0.006,
  81. dPhiMaxHighEtThres=0.0,
  82. dPhiMaxLowEtGrad=0.0,
  83. dRzMaxHighEt=0.10,
  84. dRzMaxHighEtThres=30.0,
  85. dRzMaxLowEtGrad=-0.002,
  86. )
  87. ],
  88. 'new-extra-wide': [
  89. dict(
  90. dPhiMaxHighEt=0.15,
  91. dPhiMaxHighEtThres=20.0,
  92. dPhiMaxLowEtGrad=-0.002,
  93. dRzMaxHighEt=9999.0,
  94. dRzMaxHighEtThres=0.0,
  95. dRzMaxLowEtGrad=0.0,
  96. ),
  97. dict(
  98. dPhiMaxHighEt=0.009,
  99. dPhiMaxHighEtThres=0.0,
  100. dPhiMaxLowEtGrad=0.0,
  101. dRzMaxHighEt=0.15,
  102. dRzMaxHighEtThres=30.0,
  103. dRzMaxLowEtGrad=-0.002,
  104. ),
  105. dict(
  106. dPhiMaxHighEt=0.009,
  107. dPhiMaxHighEtThres=0.0,
  108. dPhiMaxLowEtGrad=0.0,
  109. dRzMaxHighEt=0.15,
  110. dRzMaxHighEtThres=30.0,
  111. dRzMaxLowEtGrad=-0.002,
  112. )
  113. ],
  114. }
  115. samples = None
  116. def load_samples():
  117. global samples
  118. if samples is None:
  119. print("loading samples")
  120. samples = {(proc, wp): root_open(f'../hists/{proc}-{wp}.root') for proc, wp in product(procs, wps)}
  121. return samples
  122. def calc_window(et, eta, hit, variable, cut_sel):
  123. idx = min(hit-1, 2)
  124. cuts = matching_cuts[cut_sel][idx]
  125. if 'etaBins' in cuts:
  126. for eta_idx, bin_high in enumerate(cuts['etaBins']):
  127. if eta < bin_high:
  128. high_et = cuts[f'{variable}MaxHighEt'][eta_idx]
  129. high_et_thres = cuts[f'{variable}MaxHighEtThres'][eta_idx]
  130. low_et_grad = cuts[f'{variable}MaxLowEtGrad'][eta_idx]
  131. break
  132. else: # highest bin
  133. high_et = cuts[f'{variable}MaxHighEt'][-1]
  134. high_et_thres = cuts[f'{variable}MaxHighEtThres'][-1]
  135. low_et_grad = cuts[f'{variable}MaxLowEtGrad'][-1]
  136. else:
  137. high_et = cuts[f'{variable}MaxHighEt']
  138. high_et_thres = cuts[f'{variable}MaxHighEtThres']
  139. low_et_grad = cuts[f'{variable}MaxLowEtGrad']
  140. return high_et + min(0, et-high_et_thres)*low_et_grad
  141. def hist_integral_ratio(num, den):
  142. num_int = num.get_integral()
  143. den_int = den.get_integral()
  144. ratio = num_int / den_int
  145. error = np.sqrt(den_int) / den_int # TODO: Check this definition of error
  146. return ratio, error
  147. def center_text(x, y, txt, **kwargs):
  148. plt.text(x, y, txt,
  149. horizontalalignment='center', verticalalignment='center',
  150. transform=plt.gca().transAxes, **kwargs)
  151. def hist_plot(h: Hist1D, *args, include_errors=False, **kwargs):
  152. """ Plots a 1D ROOT histogram object using matplotlib """
  153. counts = h.get_counts()
  154. edges = h.get_edges()
  155. left, right = edges[:-1], edges[1:]
  156. x = np.array([left, right]).T.flatten()
  157. y = np.array([counts, counts]).T.flatten()
  158. plt.plot(x, y, *args, linewidth=2, **kwargs)
  159. if include_errors:
  160. plt.errorbar(h.get_bin_centers(), h.counts, yerr=h.errors,
  161. color='k', marker=None, linestyle='None',
  162. barsabove=True, elinewidth=.7, capsize=1)
  163. def hist2d_percent_contour(h: Hist1D, percent: float, axis: str):
  164. values = h.counts
  165. try:
  166. axis = axis.lower()
  167. axis_idx = {'x': 1, 'y': 0}[axis]
  168. except KeyError:
  169. raise ValueError('axis must be \'x\' or \'y\'')
  170. if percent < 0 or percent > 1:
  171. raise ValueError('percent must be in [0,1]')
  172. with np.warnings.catch_warnings():
  173. np.warnings.filterwarnings('ignore', 'invalid value encountered in true_divide')
  174. values = values / np.sum(values, axis=axis_idx, keepdims=True)
  175. np.nan_to_num(values, copy=False)
  176. values = np.cumsum(values, axis=axis_idx)
  177. idxs = np.argmax(values > percent, axis=axis_idx)
  178. x_centers, y_centers = h.get_bin_centers()
  179. if axis == 'x':
  180. return x_centers[idxs], y_centers
  181. else:
  182. return x_centers, y_centers[idxs]
  183. @mpb.decl_fig
  184. def plot_residuals(sample, layer, hit, variable, subdet):
  185. load_samples()
  186. proc, wp = sample
  187. track_matched = samples[sample][f'{variable}_{subdet}_L{layer}_H{hit}_v_Et_TrackMatched']
  188. # no_match = samples[sample][f'{variable}_{subdet}_L{layer}_H{hit}_v_Et_NoMatch']
  189. h_real = Hist2D(track_matched)
  190. # h_fake = Hist2D(no_match)
  191. def do_plot(h):
  192. plot_2d(h, cmap='viridis')
  193. xs, ys = hist2d_percent_contour(h, .90, 'x')
  194. plt.plot(xs, ys, color='green', label='90\% contour')
  195. xs, ys = hist2d_percent_contour(h, .995, 'x')
  196. plt.plot(xs, ys, color='darkgreen', label='99.5\% contour')
  197. ets = h.edges[1]
  198. cuts = [calc_window(et, 0, hit, variable, wp) for et in ets]
  199. plt.plot(cuts, ets, color='red', label='Cut Value')
  200. plt.xlabel({'dPhi': r'$\delta \phi$ (rads)',
  201. 'dRz': r'$\delta R/z$ (cm)'}[variable])
  202. # plt.sca(plt.subplot(1, 2, 1))
  203. do_plot(h_real)
  204. plt.title('Truth-Matched Seeds')
  205. plt.ylabel('$E_T$ (GeV)')
  206. # plt.sca(plt.subplot(1, 2, 2))
  207. # do_plot(h_fake)
  208. # plt.title('Not Truth-Matched Seeds')
  209. plt.legend(loc='upper right')
  210. @mpb.decl_fig
  211. def plot_residuals_eta(sample, hit, variable):
  212. load_samples()
  213. h = Hist2D(samples[sample][f'{variable}_residuals_v_eta_H{hit}'])
  214. plot_2d(h)
  215. xs, ys = hist2d_percent_contour(h, .90, 'x')
  216. plt.plot(xs, ys, color='green', label='90\% contour')
  217. xs, ys = hist2d_percent_contour(h, .995, 'x')
  218. plt.plot(xs, ys, color='darkgreen', label='99.5\% contour')
  219. plt.xlabel({'dPhi': r'$\delta \phi$ (rads)',
  220. 'dRz': r'$\delta R/z$ (cm)'}[variable])
  221. plt.ylabel(r'$|\eta|$')
  222. @mpb.decl_fig
  223. def plot_hit_vs_layer(sample, region):
  224. load_samples()
  225. h = Hist2D(samples[sample][f'hit_vs_layer_{region}'])
  226. plot_2d(h, colz_fmt='2.0f')
  227. plt.xlabel('Layer #')
  228. plt.ylabel('Hit #')
  229. @mpb.decl_fig
  230. def plot_roc_curve(pfx, ext=''):
  231. load_samples()
  232. def get_num_den(sample, basename):
  233. num = Hist1D(sample[f'{basename}_num'])
  234. den = Hist1D(sample[f'{basename}_den'])
  235. return hist_integral_ratio(num, den)
  236. rows = []
  237. for (proc, wp), sample in samples.items():
  238. sample_name = f'{proc}-{wp}'
  239. eff, eff_err = get_num_den(sample, f'{pfx}_eff_v_phi{ext}')
  240. pur, pur_err = get_num_den(sample, f'{pfx}_pur_v_phi{ext}')
  241. rows.append([wp,
  242. rf'${eff*100:0.2f}\pm{eff_err*100:0.2f}\%$',
  243. rf'${pur*100:0.2f}\pm{pur_err*100:0.2f}\%$'])
  244. plt.errorbar([pur], [eff], xerr=[pur_err], yerr=[eff_err],
  245. label=sample_name, marker='o', color=color(proc, wp))
  246. center_text(0.3, 0.3, r'$p_T>20$ and $|\eta|<2.4$')
  247. plt.axis('equal')
  248. plt.xlim((0.5, 1.02))
  249. plt.ylim((0.5, 1.02))
  250. plt.xlabel('Purity')
  251. plt.ylabel('Efficiency')
  252. plt.grid()
  253. plt.legend(loc='lower right')
  254. col_labels = ['Sample', 'Working Point', 'Efficiency', 'Purity']
  255. row_labels = [r'$Z \rightarrow ee$', '', '', r'$t\bar{t}$', '', '']
  256. return to_html_table(rows, col_labels, row_labels, 'table-condensed')
  257. @mpb.decl_fig
  258. def plot_kinematic_eff_all(pref, ext=''):
  259. load_samples()
  260. ax_pt = plt.subplot(221)
  261. ax_eta = plt.subplot(222)
  262. ax_phi = plt.subplot(223)
  263. errors = True
  264. for (proc, wp), sample in samples.items():
  265. sample_name = f'{proc}-{wp}'
  266. l = sample_name
  267. c = color(proc, wp)
  268. plt.sca(ax_pt)
  269. hist_plot(Hist1D(sample[f'{pref}_v_pt{ext}']), include_errors=errors, label=l, color=c)
  270. plt.sca(ax_eta)
  271. hist_plot(Hist1D(sample[f'{pref}_v_eta{ext}']), include_errors=errors, label=l, color=c)
  272. plt.sca(ax_phi)
  273. hist_plot(Hist1D(sample[f'{pref}_v_phi{ext}']), include_errors=errors, label=l, color=c)
  274. if 'eff' in pref:
  275. reference = 'Sim-Track'
  276. elif 'fake' in pref:
  277. reference = 'Supercluster'
  278. else:
  279. reference = 'GSF-Track'
  280. def set_ylim():
  281. if 'num' not in ext and 'den' not in ext:
  282. plt.ylim((0, 1.1))
  283. plt.sca(ax_pt)
  284. center_text(0.5, 0.3, r'$|\eta|<2.4$')
  285. plt.xlabel(fr"{reference} $p_T$")
  286. set_ylim()
  287. plt.sca(ax_eta)
  288. center_text(0.5, 0.3, r'$p_T>20$')
  289. plt.xlabel(fr"{reference} $\eta$")
  290. set_ylim()
  291. plt.sca(ax_phi)
  292. center_text(0.5, 0.3, r'$p_T>20$ and $|\eta|<2.4$')
  293. plt.xlabel(fr"{reference} $\phi$")
  294. set_ylim()
  295. plt.tight_layout()
  296. plt.legend(loc='upper left', bbox_to_anchor=(0.6, 0.45), bbox_transform=plt.gcf().transFigure)
  297. @mpb.decl_fig
  298. def plot_ecal_rel_res():
  299. load_samples()
  300. for sample_name, sample in samples.items():
  301. h = Hist1D(sample['ecal_energy_resolution'])
  302. h = h / h.get_integral()
  303. hist_plot(h, label=sample_name)
  304. plt.xlabel(r"ECAL $E_T$ relative error")
  305. plt.legend()
  306. @mpb.decl_fig
  307. def plot_res_contour(proc, hit_number, var, layers, ext='_TrackMatched'):
  308. load_samples()
  309. _, axs = plt.subplots(1, 2, sharey=True)
  310. def do_plot(ax, sample):
  311. plt.sca(ax)
  312. wp = sample[1]
  313. plt.title(wp)
  314. h = None
  315. for subdet, layer in layers:
  316. h = Hist2D(samples[sample][f'{var}_{subdet}_L{layer}_H{hit_number}_v_Et{ext}'])
  317. xs, ys = hist2d_percent_contour(h, .99, 'x')
  318. plt.plot(xs, ys, label=f'{subdet} - L{layer}')
  319. ets = h.edges[1]
  320. cuts = [calc_window(et, 0, hit_number, var, wp) for et in ets]
  321. plt.plot(cuts, ets, color='k', label='Cut Value')
  322. for ax, wp in zip(axs, ['new-default', 'new-wide']):
  323. do_plot(ax, (proc, wp))
  324. plt.sca(axs[-1])
  325. plt.legend(loc='upper right')
  326. @mpb.decl_fig
  327. def simple_dist(hist_name, xlabel, rebin=False, xmax=None):
  328. load_samples()
  329. for (proc, wp), sample in samples.items():
  330. sample_name = f'{proc}-{wp}'
  331. h = Hist1D(sample[hist_name])
  332. if rebin:
  333. h.rebin(50, -0.5, 200.5)
  334. h = h / h.get_integral()
  335. mean = int(np.sum(h.get_counts() * h.get_bin_centers()))
  336. hist_plot(h, label=f'{sample_name} ($\\mu={mean:g}$)',
  337. color=color(proc, wp))
  338. if xmax:
  339. plt.xlim((0, xmax))
  340. plt.xlabel(xlabel)
  341. plt.legend()
  342. def all_cut_plots(refresh=True, publish=False):
  343. figures = {
  344. 'tracking_roc_curve': (plot_roc_curve, ('tracking',)),
  345. 'tracking_roc_curve_dR': (plot_roc_curve, ('tracking',), {'ext': '_dR'}),
  346. 'seeding_roc_curve': (plot_roc_curve, ('seed',)),
  347. 'tracking_eff_all': (plot_kinematic_eff_all, ('tracking_eff',)),
  348. 'tracking_pur_all': (plot_kinematic_eff_all, ('tracking_pur',)),
  349. 'tracking_eff_all_dR': (plot_kinematic_eff_all, ('tracking_eff',), {'ext': '_dR'}),
  350. 'tracking_pur_all_dR': (plot_kinematic_eff_all, ('tracking_pur',), {'ext': '_dR'}),
  351. 'seeding_eff_all': (plot_kinematic_eff_all, ('seed_eff',)),
  352. 'seeding_pur_all': (plot_kinematic_eff_all, ('seed_pur',)),
  353. 'partial_fake_rate_all': (plot_kinematic_eff_all, ('partial_fake_rate',)),
  354. 'partial_fake_rate_all_num': (plot_kinematic_eff_all, ('partial_fake_rate',), {'ext': '_num'}),
  355. 'partial_fake_rate_all_den': (plot_kinematic_eff_all, ('partial_fake_rate',), {'ext': '_den'}),
  356. 'full_fake_rate_all': (plot_kinematic_eff_all, ('full_fake_rate',)),
  357. 'full_fake_rate_all_num': (plot_kinematic_eff_all, ('full_fake_rate',), {'ext': '_num'}),
  358. 'full_fake_rate_all_den': (plot_kinematic_eff_all, ('full_fake_rate',), {'ext': '_den'}),
  359. 'clean_fake_rate_all': (plot_kinematic_eff_all, ('clean_fake_rate',)),
  360. 'clean_fake_rate_all_num': (plot_kinematic_eff_all, ('clean_fake_rate',), {'ext': '_num'}),
  361. 'clean_fake_rate_all_den': (plot_kinematic_eff_all, ('clean_fake_rate',), {'ext': '_den'}),
  362. 'number_of_seeds': (simple_dist, ('n_seeds', 'Number of Seeds'), {'rebin': True}),
  363. 'number_of_sim_els': (simple_dist, ('n_good_sim', 'Number of prompt(ish) electrons'), {'xmax': 10.5}),
  364. 'number_of_gsf_tracks': (simple_dist, ('n_gsf_track', 'Number of reco electrons'), {'xmax': 10.5}),
  365. 'number_of_matched': (simple_dist, ('n_matched', 'Number of matched electrons'), {'xmax': 10.5}),
  366. 'number_of_merged': (simple_dist, ('n_merged', 'Number of merged electrons'), {'xmax': 10.5}),
  367. 'number_of_lost': (simple_dist, ('n_lost', 'Number of lost electrons'), {'xmax': 10.5}),
  368. 'number_of_split': (simple_dist, ('n_split', 'Number of split electrons'), {'xmax': 10.5}),
  369. 'number_of_faked': (simple_dist, ('n_faked', 'Number of faked electrons'), {'xmax': 10.5}),
  370. 'number_of_flipped': (simple_dist, ('n_flipped', 'Number of flipped electrons'), {'xmax': 10.5}),
  371. 'matched_dR': (simple_dist, ('matched_dR', 'dR between sim and reco')),
  372. 'matched_dpT': (simple_dist, ('matched_dpT', 'dpT between sim and reco')),
  373. 'number_of_matched_dR': (simple_dist, ('n_matched_dR', 'Number of matched electrons - dR Matched'), {'xmax': 10.5}),
  374. 'number_of_merged_dR': (simple_dist, ('n_merged_dR', 'Number of merged electrons - dR Matched'), {'xmax': 10.5}),
  375. 'number_of_lost_dR': (simple_dist, ('n_lost_dR', 'Number of lost electrons - dR Matched'), {'xmax': 10.5}),
  376. 'number_of_split_dR': (simple_dist, ('n_split_dR', 'Number of split electrons - dR Matched'), {'xmax': 10.5}),
  377. 'number_of_faked_dR': (simple_dist, ('n_faked_dR', 'Number of faked electrons - dR Matched'), {'xmax': 10.5}),
  378. 'number_of_flipped_dR': (simple_dist, ('n_flipped_dR', 'Number of flipped electrons - dR Matched'), {'xmax': 10.5}),
  379. 'matched_dR_dR': (simple_dist, ('matched_dR_dR', 'dR between sim and reco - dR Matched')),
  380. 'matched_dpT_dR': (simple_dist, ('matched_dpT_dR', 'dpT between sim and reco - dR Matched')),
  381. 'sim_pt': (simple_dist, ('sim_pt', 'Sim Track $p_T$')),
  382. 'sim_eta': (simple_dist, ('sim_eta', 'Sim Track $eta$')),
  383. 'sim_phi': (simple_dist, ('sim_phi', 'Sim Track $phi$')),
  384. 'reco_pt': (simple_dist, ('reco_pt', 'Reco Track $p_T$')),
  385. 'reco_eta': (simple_dist, ('reco_eta', 'Reco Track $eta$')),
  386. 'reco_phi': (simple_dist, ('reco_phi', 'Reco Track $phi$')),
  387. 'ecal_rel_res': plot_ecal_rel_res,
  388. 'hit_v_layer_BPIX_new-default_zee': (plot_hit_vs_layer, (('zee', 'new-default'), 'barrel')),
  389. 'hit_v_layer_FPIX_new-default_zee': (plot_hit_vs_layer, (('zee', 'new-default'), 'forward')),
  390. 'hit_v_layer_BPIX_new-default_tt': (plot_hit_vs_layer, (('tt', 'new-default'), 'barrel')),
  391. 'hit_v_layer_FPIX_new-default_tt': (plot_hit_vs_layer, (('tt', 'new-default'), 'forward')),
  392. 'hit_v_layer_BPIX_new-wide_zee': (plot_hit_vs_layer, (('zee', 'new-wide'), 'barrel')),
  393. 'hit_v_layer_FPIX_new-wide_zee': (plot_hit_vs_layer, (('zee', 'new-wide'), 'forward')),
  394. 'hit_v_layer_BPIX_new-wide_tt': (plot_hit_vs_layer, (('tt', 'new-wide'), 'barrel')),
  395. 'hit_v_layer_FPIX_new-wide_tt': (plot_hit_vs_layer, (('tt', 'new-wide'), 'forward')),
  396. }
  397. hit_layers = [(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4)]
  398. for proc, wp, (hit, layer), var, subdet in product(['zee', 'tt'], ['new-default', 'new-wide'],
  399. hit_layers,
  400. ['dPhi', 'dRz'], ['BPIX', 'FPIX']):
  401. figures.update({
  402. f'res_{subdet}_L{layer}_H{hit}_{var}_{proc}_{wp}':
  403. (plot_residuals, ((proc, wp), layer, hit, var, subdet))})
  404. rel_layers = {1: [('BPIX', 1), ('BPIX', 2), ('FPIX', 1), ('FPIX', 2)],
  405. 2: [('BPIX', 2), ('BPIX', 3), ('FPIX', 2), ('FPIX', 3)],
  406. 3: [('BPIX', 3), ('BPIX', 4), ('FPIX', 3)], }
  407. for proc, hit, var in product(['zee', 'tt'], [1, 2, 3], ['dPhi', 'dRz']):
  408. figures.update({
  409. f'resall_H{hit}_{var}_{proc}': (plot_res_contour, (proc, hit, var, rel_layers[hit]))})
  410. for proc, wp, hit, var in product(['zee', 'tt'], ['new-default', 'new-wide'], [1, 2, 3], ['dPhi', 'dRz']):
  411. figures.update({
  412. f'res_v_eta_H{hit}_{var}_{proc}_{wp}': (plot_residuals_eta, ((proc, wp), hit, var))})
  413. mpb.render(figures, refresh=refresh)
  414. mpb.generate_report(figures, 'Electron Seeding Studies',
  415. output=f'hists.html',
  416. source=__file__)
  417. # mpb.generate_report(figures, 'Fake Rate Investigation',
  418. # output=f'report.html',
  419. # body='../docs/reports/report_2018_05_18.md')
  420. if publish:
  421. mpb.publish()
  422. def color(proc, wp):
  423. from matplotlib.colors import XKCD_COLORS
  424. def f(name):
  425. return XKCD_COLORS['xkcd:'+name]
  426. return {
  427. ('zee', 'new-extra-narrow'): f('kelly green'),
  428. ('tt', 'new-extra-narrow'): f('grey green'),
  429. ('zee', 'new-default'): f('red'),
  430. ('tt', 'new-default'): f('pink'),
  431. ('zee', 'new-wide'): f('strong blue'),
  432. ('tt', 'new-wide'): f('bright blue'),
  433. ('zee', 'new-extra-wide'): f('indigo'),
  434. ('tt', 'new-extra-wide'): f('bright purple'),
  435. ('zee', 'old-default'): f('black'),
  436. ('tt', 'old-default'): f('blue grey'),
  437. }[(proc, wp)]
  438. if __name__ == '__main__':
  439. set_defaults()
  440. mpb.configure(output_dir='seeding_studies',
  441. multiprocess=True,
  442. publish_remote="caleb@fangmeier.tech",
  443. publish_dir="/var/www/eg",
  444. publish_url="eg.fangmeier.tech/",
  445. )
  446. procs = {
  447. 'zee': r'$Z\rightarrow e^+e_-}$',
  448. 'tt': r'$t\bar{t}$'
  449. }
  450. wps = {
  451. 'new-default': 'HLT Settings',
  452. 'new-wide': 'Wide Settings',
  453. 'old-default': 'Old Seeding',
  454. }
  455. all_cut_plots(refresh=True, publish=False)