123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 |
- % rubber: module pdftex
- \documentclass[english,aspectratio=43,8pt]{beamer}
- \usepackage{graphicx}
- \usepackage{amssymb}
- \usepackage{booktabs}
- \usepackage{siunitx}
- \usepackage{subcaption}
- \usepackage{marvosym}
- \usepackage{verbatim}
- \usepackage[normalem]{ulem} % Needed for /sout
- \newcommand{\pb}{\si{\pico\barn}}%
- \newcommand{\fb}{\si{\femto\barn}}%
- \newcommand{\invfb}{\si{\per\femto\barn}}
- \newcommand{\GeV}{\si{\giga\electronvolt}}
- \hypersetup{colorlinks=true,urlcolor=blue}
- \usetheme[]{bjeldbak}
- \newcommand{\backupbegin}{%
- \newcounter{finalframe}
- \setcounter{finalframe}{\value{framenumber}}
- }
- \newcommand{\backupend}{%
- \setcounter{framenumber}{\value{finalframe}}
- }
- \newcommand\blfootnote[1]{%
- \begingroup
- \renewcommand\thefootnote{}\footnote{#1}%
- \addtocounter{footnote}{-1}%
- \endgroup
- }
- \begin{document}
- \title[$e$ Seeding Validation]{Offline Electron Seeding Validation \-- Update}
- \author[C. Fangmeier]{\textbf{Caleb Fangmeier} \\ Ilya Kravchenko, Greg Snow}
- \institute[UNL]{University of Nebraska \-- Lincoln}
- \date{EGM Reco/Comm/HLT meeting | June 22, 2018}
- \titlegraphic{%
- \begin{figure}
- \includegraphics[width=1in]{CMSlogo.png}\hspace{0.75in}\includegraphics[width=1in]{nebraska-n.png}
- \end{figure}
- }
- \begin{frame}[plain]
- \titlepage%
- \end{frame}
- \begin{frame}{Introduction}
- \begin{itemize}
- \item Our goal is to study \textbf{seeding} for the \textbf{offline} GSF tracking with the \textbf{new pixel detector}.
- \item Specifically, we want to optimize the new pixel-matching scheme from HLT for use in off-line reconstruction.
- \item This Talk:
- \begin{itemize}
- \item Define and demonstrate performance of a GSF-Track ``Fake Rate'' for:
- \begin{itemize}
- \item Current offline (Legacy HLT) seeding method with default offline settings
- \item New HLT seeding method with HLT settings\footnotemark%
- \item New HLT seeding method with optimized-for-offline (aka \texttt{wide}) settings
- \end{itemize}
- \item Show efficiency for prompt prompt electrons specifically
- \end{itemize}
- \end{itemize}
- \footnotetext[1]{\tiny Note: In previous talks I've called this one \texttt{narrow}.}
- \end{frame}
- \begin{frame}{N-Hit Electron Seeding}
- \begin{columns}
- \begin{column}{0.5\textwidth}
- {\small
- \begin{enumerate}
- \item Using the beam spot, the SC position, and SC energy, propagate a path through the pixels.
- \item Require the first hit to be within a $\delta\phi$ and $\delta z$ window. ($\delta\phi$ and $\delta R$ for FPIX)
- \item $\delta z$ window for first hit is huge as SC and beam spot positions give very little information about $z$.
- \item Forget the SC position, and propagate a new track based on the vertex and first hit positions, and the SC energy.
- \item Progress one-by-one through the remaining hits in the seed and require each one fit within a specified window around the track.
- \item Quit when all hits are matched, or a hit falls outside the window. No skipping is allowed.
- \end{enumerate}
- }
- \end{column}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- \includegraphics[width=0.9\textwidth]{../common/diagrams/seeding_step2.png}
- \end{figure}
- \begin{figure}
- \includegraphics[width=0.9\textwidth]{../common/diagrams/seeding_step3.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Definitions}
- \begin{itemize}
- \item \textbf{Sim-Track \--} A track from a simulated electron both originating from the luminous region of CMS (beam-spot +- 5$\sigma$) and having $|\eta|<3.0$.
- \item \textbf{ECAL-Driven Seed \--} A seed created via a matching procedure between Super-Clusters and General Tracking Seeds (Either from \texttt{ElectronSeedProducer} or \texttt{ElectronNHitSeedProducer}). Must have $HOE<0.15$.
- \item \textbf{GSF Track \--} A track from GSF-Tracking resulting from an \textbf{ECAL-Driven Seed}
- % \item \textbf{Seeding Efficiency \--} The fraction of \textbf{Sim-Tracks} that have a matching \textbf{ECAL-Driven Seed} (based on simhit-rechit linkage or $\Delta R$ matching)
- \item \textbf{GSF Tracking Efficiency \--} The fraction of \textbf{Sim-Tracks} that have a matching \textbf{GSF Track} (based on $\Delta R$ matching)
- % \item \textbf{ECAL-Driven Seed Purity \--} The fraction of \textbf{ECAL-Driven Seeds} that have a matching \textbf{Sim-Track}
- \item \textbf{GSF Tracking Purity \--} The fraction of \textbf{GSF Tracks} that have a matching \textbf{Sim-Track}
- \item \textbf{GSF Tracking Fake Rate \--} The fraction of nontruth-matched Super-Clusters which result in at least one \textbf{GSF Track}.
- \end{itemize}
- \end{frame}
- % \begin{frame}{Previous status-quo}
- % \begin{columns}
- % \begin{column}{0.45\textwidth}
- % {\small
- % \begin{itemize}
- % \item In a previous presentation\footnotemark, I showed efficiency vs. purity for
- % \begin{itemize}
- % \item Old pair-match seeding (\texttt{ElectronSeedProducer})
- % \item New triplet seeding (\texttt{ElectronNHitSeedProducer}) for several choices of matching windows.
- % \end{itemize}
- % \item Performance of new seeding at the \texttt{wide} working point was comparable to old seeding in low-fake ($Z\rightarrow e^+e^-$) environment
- % \item Needed to validate performance in a high fake environment.
- % \end{itemize}
- % }
- % \end{column}
- % \begin{column}{0.6\textwidth}
- % \begin{figure}
- % \includegraphics[width=0.9\textwidth]{../common/figures/tracking_roc_curves_linear_plus_old_hoe.png}
- % \end{figure}
- % \end{column}
- % \end{columns}
- % \footnotetext[1]{\tiny \url{https://indico.cern.ch/event/697077/contributions/2936039/attachments/1618649/2573874/main.pdf}}
- % \end{frame}
- \begin{frame}{Relative Performance \-- GSF Tracking Efficiency}
- \begin{columns}
- \begin{column}{0.5\textwidth}
- \begin{itemize}
- \item Figure shows GSF Tracking efficiency vs kinematic variables of the electron \texttt{SimTrack}
- \item Efficiency is more or less the same for both DY and $t\bar{t}$ environments and for both algorithms and working points.
- \item Largest (statistically significant) differences appear at low $p_T$ and in the barrel/endcap transition region.
- \end{itemize}
- \end{column}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- GSF Tracking Efficiency
- \includegraphics[width=1.0\textwidth]{live_figures/tracking_eff_dR.png}
- \end{figure}
- \end{column}
- \end{columns}
- \blfootnote{\tiny This and the following slide have been show before and are included for completeness}
- \end{frame}
- \begin{frame}{Relative Performance \-- GSF Track Purity}
- \begin{columns}
- \begin{column}{0.5\textwidth}
- \begin{itemize}
- \item Figure shows GSF Tracking purity vs kinematic variables of the \texttt{GSFTrack}
- \item Clearly purity is affected by the higher fake environment in the $t\bar{t}$ sample.
- \item Note how the \texttt{narrow} working point of the new seeding (green) has significantly better purity than the \texttt{wide} working point or the old seeding.
- \item Purity loss at high $p_T$ is a feature of the shared-hits matching between \texttt{SimTracks} and \texttt{GSFTracks}.
- \end{itemize}
- \end{column}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- GSF Tracking Purity
- \includegraphics[width=1.0\textwidth]{live_figures/tracking_pur_dR.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Relative Performance \-- GSF Tracking Fake Rate}
- \begin{columns}
- \begin{column}{0.5\textwidth}
- \begin{itemize}
- \item Figure shows GSF Tracking fake rate vs kinematic variables of the supercluster
- \item Supercluster must have $HOE<0.15$, so fake are presumably from mostly photons or $\pi^0$
- \item There is a clear reduction in the fake rate with respect to the old method in both the \texttt{default} and \texttt{wide} working points.
- \item Seen in both $Z\rightarrow ee$ and $t\bar{t}$
- \end{itemize}
- \end{column}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- GSF Tracking Fake Rate
- \includegraphics[width=1.0\textwidth]{live_figures/fake_rate_no_e_match.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Relative Performance \-- Prompt Efficiency}
- \begin{columns}
- \begin{column}{0.4\textwidth}
- \begin{itemize}
- \item The fraction of prompt electrons that match a GSF-Track
- \item Biggest improvements, again, happen at low $p_T$ and in the barrel/endcap transition region
- \end{itemize}
- \end{column}
- \begin{column}{0.6\textwidth}
- \begin{figure}
- Prompt GSF Tracking Efficiency
- \includegraphics[width=1.0\textwidth]{live_figures/prompt_eff_dR.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Relative Performance \-- Seed Multiplicity}
- \begin{columns}
- \begin{column}{0.4\textwidth}
- \begin{itemize}
- \item A single supercluster can potentially produce many seeds if it matches with many nearby tracks, however only one of these can be from the electron.
- \item Reducing the number of overall seeds while still producing \emph{the} correct one is desirable from a computational perspective.
- \item The new seeding scheme (\texttt{wide} WP) reduces the number of seeds by a factor of 3.8 for $t\bar{t}$ and 5.6 for $Z\rightarrow ee$.
- \end{itemize}
- \end{column}
- \begin{column}{0.6\textwidth}
- \begin{figure}
- Number of Electron Seeds Per Event
- \includegraphics[width=1.0\textwidth]{live_figures/number_of_good_seeds.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Overall Performance}
- \begin{center}
- Integrating over all tracks with $p_T>20$GeV and $\eta<2.4$ yields the performance numbers below.
- \begin{figure}
- % Number of Electron Seeds Per Event
- \includegraphics[width=0.6\textwidth]{figures/eff_table.png}
- \end{figure}
- \begin{itemize}
- \item The HLT default settings (\texttt{narrow}) of the new pixel matching
- scheme yield non-trivially better purity at the loss of some efficiency
- with respect to both the old seeding and the \texttt{wide} working point.
- \item The \texttt{wide} working point of the new seeding matches the
- \texttt{old-seeding} within errors except for purity is $\approx 2$\%
- better in the $t\bar{t}$ sample
- \end{itemize}
- \end{center}
- \end{frame}
- \begin{frame}{Conclusions \& Outlook}
- \begin{itemize}
- \item The new seeding algorithm has been optimized to have better or comparable performance to the current Offline seeding method in all investigated metrics including
- \begin{itemize}
- \item GSF Tracking Efficiency
- \item GSF Tracking Purity
- \item GSF Tracking Fake Rate
- \item Number of Seeds
- \end{itemize}
- \item Unless there are objections, propose to move forward with implementing the new algorithm as the default in the next available CMSSW release.
- \end{itemize}
- \blfootnote{\tiny Analysis and ploting code is available at \url{}}
- \blfootnote{\tiny Additional plots are available at \url{}}
- \end{frame}
- \appendix
- \backupbegin%
- \begin{frame}
- \begin{center}
- {\Huge BACKUP}
- \end{center}
- \end{frame}
- \begin{frame}{Overall Performance}
- \begin{columns}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- GSF Tracking Performance (Hit Matched)
- \includegraphics[width=1.0\textwidth]{live_figures/tracking_roc_curve.png}
- \end{figure}
- \end{column}
- \begin{column}{0.5\textwidth}
- \begin{figure}
- GSF Tracking Performance ($\Delta R$ Matched)
- \includegraphics[width=1.0\textwidth]{live_figures/tracking_roc_curve_dR.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Matching Window Parameters}
- \begin{table}[]
- \centering
- \begin{tabular}{@{}llrrrr@{}}
- \toprule
- & & \textbf{narrow} & \textbf{default (HLT)} & \textbf{wide} & \textbf{extra-wide} \\ \midrule
- Hit 1 & dPhiMaxHighEt & \textbf{0.025} & \textbf{0.05} & \textbf{0.1} & \textbf{0.15} \\
- & dPhiMaxHighEtThres & 20.0 & 20.0 & 20.0 & 20.0 \\
- & dPhiMaxLowEtGrad & -0.002 & -0.002 & -0.002 & -0.002 \\
- & dRzMaxHighEt & 9999.0 & 9999.0 & 9999.0 & 9999.0 \\
- & dRzMaxHighEtThres & 0.0 & 0.0 & 0.0 & 0.0 \\
- & dRzMaxLowEtGrad & 0.0 & 0.0 & 0.0 & 0.0 \\ \midrule
- Hit 2 & dPhiMaxHighEt & \textbf{0.0015} & \textbf{0.003} & \textbf{0.006} & \textbf{0.009} \\
- & dPhiMaxHighEtThres & 0.0 & 0.0 & 0.0 & 0.0 \\
- & dPhiMaxLowEtGrad & 0.0 & 0.0 & 0.0 & 0.0 \\
- & dRzMaxHighEt & \textbf{0.025} & \textbf{0.05} & \textbf{0.1} & \textbf{0.15} \\
- & dRzMaxHighEtThres & 30.0 & 30.0 & 30.0 & 30.0 \\
- & dRzMaxLowEtGrad & -0.002 & -0.002 & -0.002 & -0.002 \\ \midrule
- Hit 3+ & dPhiMaxHighEt & \textbf{0.0015} & \textbf{0.003} & \textbf{0.006} & \textbf{0.009} \\
- & dPhiMaxHighEtThres & 0.0 & 0.0 & 0.0 & 0.0 \\
- & dPhiMaxLowEtGrad & 0.0 & 0.0 & 0.0 & 0.0 \\
- & dRzMaxHighEt & \textbf{0.025} & \textbf{0.05} & \textbf{0.1} & \textbf{0.15} \\
- & dRzMaxHighEtThres & 30.0 & 30.0 & 30.0 & 30.0 \\
- & dRzMaxLowEtGrad & -0.002 & -0.002 & -0.002 & -0.002 \\ \bottomrule
- \end{tabular}
- \end{table}
- \centering
- \texttt{NHit} Seeding window parameters. Bold designates modified values.
- \end{frame}
- \begin{frame}{Samples}
- \begin{itemize}
- \item {\tiny /ZToEE\_NNPDF30\_13TeV-powheg\_M\_120\_200/RunIISummer17DRStdmix-NZSFlatPU28to62\_92X\_upgrade2017\_realistic\_v10-v1}
- \item {\tiny /TT\_TuneCUETP8M2T4\_13TeV-powheg-pythia8/RunIISummer17DRStdmix-NZSFlatPU28to62\_92X\_upgrade2017\_realistic\_v10-v2}
- \end{itemize}
- \end{frame}
- \backupend%
- \end{document}
|