123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- % rubber: module pdftex
- \documentclass[english,aspectratio=43,8pt]{beamer}
- \usepackage{graphicx}
- \usepackage{amssymb}
- \usepackage{booktabs}
- \usepackage{siunitx}
- \usepackage{subcaption}
- \usepackage{marvosym}
- \usepackage{verbatim}
- \usepackage[normalem]{ulem} % Needed for /sout
- \newcommand{\pb}{\si{\pico\barn}}%
- \newcommand{\fb}{\si{\femto\barn}}%
- \newcommand{\invfb}{\si{\per\femto\barn}}
- \newcommand{\GeV}{\si{\giga\electronvolt}}
- \hypersetup{colorlinks=true,urlcolor=blue}
- \usetheme[]{bjeldbak}
- \begin{document}
- \title[e Reco. Validation]{Offline Electron Seeding Validation \-- Update}
- \author[C. Fangmeier]{\textbf{Caleb Fangmeier} \\ Ilya Kravchenko, Greg Snow}
- \institute[UNL]{University of Nebraska \-- Lincoln}
- \date{October 4, 2017}
- \titlegraphic{%
- \begin{figure}
- \includegraphics[width=1in]{CMSlogo.png}\hspace{0.75in}\includegraphics[width=1in]{nebraska-n.png}
- \end{figure}
- }
- \begin{frame}[plain]
- \titlepage%
- \end{frame}
- \begin{frame}{Introduction}
- \begin{itemize}
- \item Our goal is to study \textbf{seeding} for the \textbf{offline} Gsf tracking with the \textbf{new pixel detector}.
- % \item Study window sizes for pixel matching
- % \item Implement
- \item Previous talk\footnote{https://indico.cern.ch/event/616443/contributions/2669480/attachments/1496854/2329372/main.pdf} gave introduction/motivation to approach
- \item Since Then,
- \begin{itemize}
- \item Migrated Code from \texttt{8\_1\_0} to \texttt{9\_0\_2}
- \item Regenerated \texttt{trackingNtuple}s for dataset \\
- {\tiny \vspace{0.05in}\hspace{-0.2in}\texttt{/DYJetsToLL\_M-50\_TuneCUETP8M1\_13TeV-madgraphMLM-pythia8 \\
- \vspace{-0.05in}\hspace{-0.2in}/PhaseISpring17DR-FlatPU28to62HcalNZS\_90X\_upgrade2017\_realistic\_v20-v1/GEN-SIM-RAW}}
- \item Calculated $\Delta \phi_{1,2}$/$\Delta z_{1,2}$ for distances between extrapolated SC and reconstructed pixel hit
- \item Added additional detector information (Ladder/Blade) for matched hits
- \end{itemize}
- \end{itemize}
- \end{frame}
- \begin{frame}{Definitions}
- \begin{itemize}
- \item $\Delta \phi/z_{1}$ \-- Distance between \texttt{RecHit} and extrapolated impact position for first matched hit
- \item $\Delta \phi/z_{2}$ \-- Distance between \texttt{RecHit} and extrapolated impact position for second matched hit
- \item $\Delta \phi/z_1^{\textrm{sim}}$ \-- Distance between \texttt{RecHit} and \texttt{SimHit} for 1st innermost hit in \texttt{Seed}.
- \item $\Delta \phi/z_2^{\textrm{sim}}$ \-- Distance between \texttt{RecHit} and \texttt{SimHit} for 2nd innermost hit in \texttt{Seed}.
- \end{itemize}
- \end{frame}
- \begin{frame}{Comparing $\Delta \phi_1$ and $\Delta \phi_1^{\textrm{sim}}$ Resolution}
- \begin{columns}
- \begin{column}{0.4\textwidth}
- \begin{itemize}
- \item $\sigma_{\Delta \phi_1}/\sigma_{\Delta \phi_1^{\textrm{sim}}} \approx 175$
- \item But these are measuring quite different quantities!
- \item $\Delta \phi_1^{\textrm{sim}}$ is effectively just the single-hit pixel resultion
- \item While $\Delta \phi_1$ is affected by SC position/energy resolution and beam spot.
- \item So not really an apples-to-apples comparison.
- \end{itemize}
- \end{column}
- \begin{column}{0.6\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_phi1_B1.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Hits in BPIX Layer 2 }
- \begin{columns}
- \begin{column}{0.4\textwidth}
- \begin{itemize}
- \item Same as previous slide, but with hits in BPIX L2 instead of L1.
- \item Note that $\sigma_{\Delta \phi_1}$ is almost unchanged from the L1 value (74.2 millirad)
- \item However, $\sigma_{\Delta \phi_1^{\textrm{sim}}}$ decreases by $\approx 1/r$
- \item This is because single-hit resultion is independent of layer.
- \end{itemize}
- \end{column}
- \begin{column}{0.6\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_phi1_B2.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{What about 2nd \sout{Breakfast} Hits?}
- \begin{columns}
- \begin{column}{0.4\textwidth}
- \begin{itemize}
- \item $\sigma_{\Delta \phi_2^{\textrm{sim}}}$ is slightly smaller than $\sigma_{\Delta \phi_1^{\textrm{sim}}}$
- \item $\sigma_{\Delta \phi_2}$ is about 3.4 times smaller than $\sigma_{\Delta \phi_1}$, but the width of the core is about the same.
- \item Interesting side-band feature. Do experts recognize this?
- \end{itemize}
- \end{column}
- \begin{column}{0.6\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_phi2_B2.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{What about $\Delta z$?}
- \begin{columns}
- \begin{column}{0.4\textwidth}
- \begin{itemize}
- \item The distribution of $\Delta z_1$ is essentially flat within the window ($\pm 0.5$ cm).
- \item Not surprising due to the rough extrapolation and high likelihood of unrelated hits in area of extrapolated point.
- \end{itemize}
- \end{column}
- \begin{column}{0.6\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_z1_B1.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{And finally, what about $\Delta z$ for second hits?}
- \begin{columns}
- \begin{column}{0.4\textwidth}
- \begin{itemize}
- \item Current window size ($\pm 900 \mu$m) still seems appropriate, but maybe could be optimized?
- \item $\Delta z_2^{\textrm{sim}}$ resolution almost identical to $\Delta z_1^{\textrm{sim}}$
- \item Implies single-hit resulation is independent of whether the hit is the 1st or 2nd innermost in seed
- \end{itemize}
- \end{column}
- \begin{column}{0.6\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{figures/live/sc_ex_v_sim_z2_B2.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}{Outlook}
- \begin{itemize}
- \item Equivalent studies for FPIX
- \item Define and measure hit inefficiencies
- \item Test independently effects of supercluster position and energy mis-measurement
- \item Optimize window sizes
- \item Test triplet (instead of pair) matching
- \item Suggestions (and priorities!) from experts?
- \end{itemize}
- \end{frame}
- \begin{frame}[noframenumbering]
- \centering
- {\Huge BACKUP }
- \end{frame}
- \begin{frame}[noframenumbering]{Gsf Electron Seeding I}
- \begin{columns}
- \begin{column}{0.75\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding1.png}
- \end{figure}
- \end{column}
- \begin{column}{0.25\textwidth}
- \begin{figure}
- \hspace{-1in}
- \vspace{-1in}
- \includegraphics[width=1.8\textwidth]{diagrams/window1.png}
- \end{figure}
- \end{column}
- \end{columns}
- \vfill
- \footnotesize{Windows from \url{https://indico.cern.ch/event/611042/contributions/2464057/attachments/1406271/2148742/ElectronTracking30112016.pdf}}
- \end{frame}
- \begin{frame}[noframenumbering]{Gsf Electron Seeding II}
- \begin{columns}
- \begin{column}{0.66\textwidth}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding2.png}
- \end{figure}
- \end{column}
- \begin{column}{0.33\textwidth}
- \begin{figure}
- \hspace{-0.75in}
- \vspace{1in}
- \includegraphics[width=1.5\textwidth]{diagrams/window2.png}
- \end{figure}
- \end{column}
- \end{columns}
- \end{frame}
- \begin{frame}[noframenumbering]{Gsf Electron Seeding III}
- \begin{center}
- \begin{figure}
- \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding3.png}
- \end{figure}
- \end{center}
- \end{frame}
- \end{document}
|