Offline Electron Reconstruction Validation

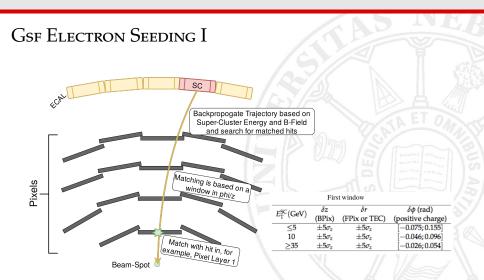
Caleb Fangmeier Ilya Kravchenko, Greg Snow

University of Nebraska - Lincoln

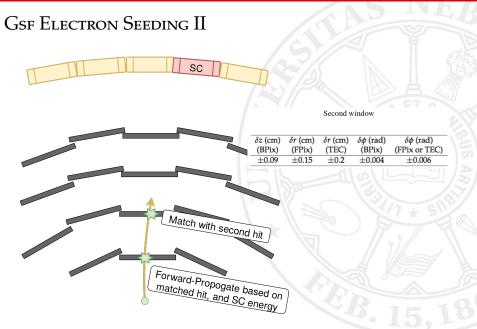
July 21, 2017

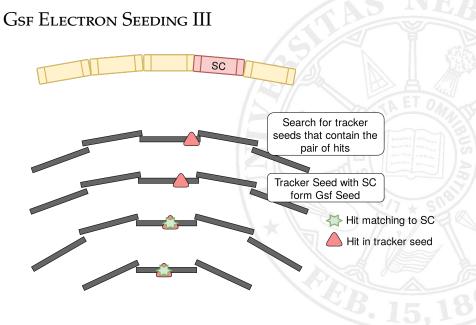
INTRODUCTION

- Our goal is to study seeding for the offline Gsf tracking with the new pixel detector.
- Ongoing studies¹ in HLT examine the resolution of RecHits used in Gsf Tracking.
- ► In those studies, the resolution is computed by measuring the distance between the **RecHits** and the extrapolated paths from ECAL **super-clusters** (SCs).
- For offline reconstruction, we compute residuals by comparing the position of RecHits and associated SimHits.
- Knowing these resolutions is important in choosing the size of search windows in the hit matching algorithm used in electron reconstruction.

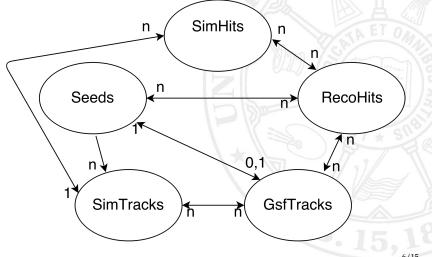

¹https://indico.cern.ch/event/613833/contributions/2646392/ attachments/1486134/2307836/EGMHLT_PixelMatching_Jun30.pdf

INTRODUCTION

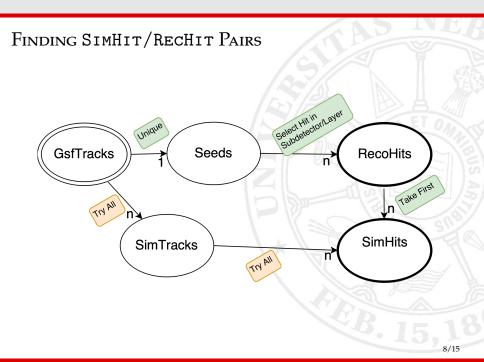

- We use Rafael Lopes de Sa's analysis setup² that is derived from the standard offline tracking reconstruction tool TrackingNtuple from Validation/RecoTrack.
- Source dataset: /DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/ PhaseIFall16DR-FlatPU28to62HcalNZSRAW_81X_upgrade2017_realistic_v26-v1/ GEN-SIM-RAW
- ► Using Release CMSSW_8_1_0
- ► Figures in this talk use 31790 events (could be re-run with more)

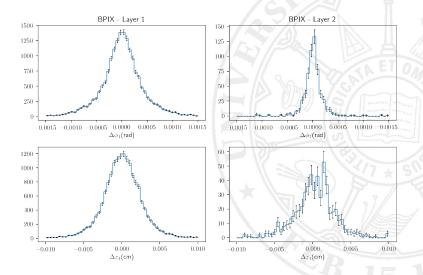

//github.com/rafaellopesdesa/cmssw/tree/ValidationGsfTracks81X

²https:

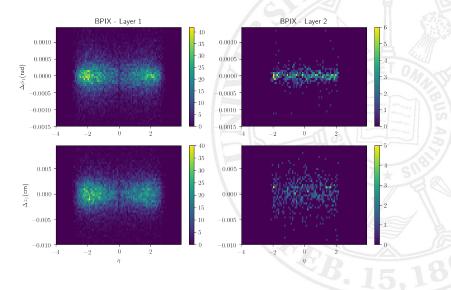

Windows from https://indico.cern.ch/event/611042/contributions/ 2464057/attachments/1406271/2148742/ElectronTracking30112016.pdf

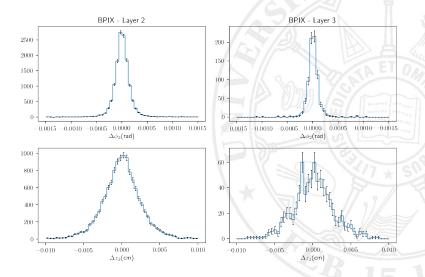
TRACKINGNTUPLE

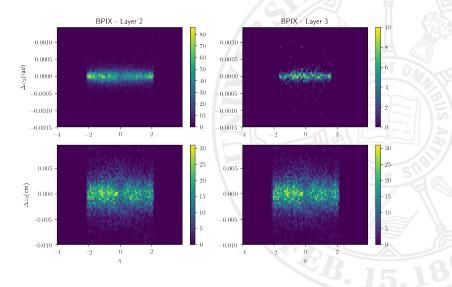

The TrackingNtuple format contains (among others) the below crosslinked collections

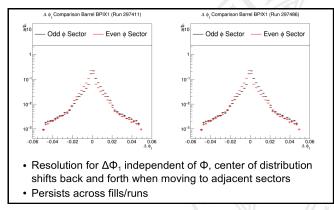

FINDING SIMHIT/RECHIT PAIRS

To find residuals for calculating resolutions, require a pair containing 1 RecHit and 1 SimHit. Procedure is as follows:

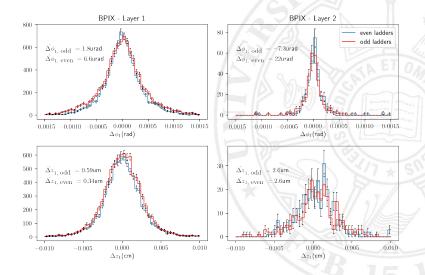

- 1. For each Track, get it's Seed (unique)
- 2. For each RecHit in the Seed, require
 - ► It is in the specified subdetector (e.g. BPIX Layer 1)
 - It is the 1st/2nd hit in the Seed.
 - It is matched to at least one SimHit.
- 3. For each RecHit (B) passing the above, take the first matched SimHit (A).
- Now look through all SimHits associated with SimTracks associated with the original Track. If A exists in this set. Make a pair of SimHit A and RecHit B.


BPIX HIT 1 RESOLUTION


BPIX Hit 1 Resolution VS. η


BPIX HIT 2 RESOLUTION

BPIX Hit 2 Resolution VS. η



Resolution dependence on even/odd ladder number

- ► Above From Dylan Rankin's June 30 Presentation. (See slide 1)
- ► We have slightly different definitions of Δφ₁, but wanted to investigate ourselves.

Resolution dependence on even/odd ladder number

14/15

Conclusions

- Analysis machinery for offline electron RECO studies with MC truth is in place.
- ► Preliminary plots of $\Delta \phi_{1/2}$ and $\Delta z_{1/2}$ for BPIX Layers 1/2 are shown.
- Code for this analysis is here:

git.fangmeier.tech/caleb/EGamma_ElectronTrackingValidation

- next to come
 - run on larger event samples (trackingNtuples are generated, just need to use)
 - include FPIX
 - investigate reasons for rec hit inefficiencies
 - introduce triplet-based pixel matching for the seeds and repeat the studies