Offline Electron Seeding Validation - Update

Caleb Fangmeier Ilya Kravchenko, Greg Snow

University of Nebraska - Lincoln

EGamma Reco/Comm/HLT Meeting — March 16, 2018

INTRODUCTION

- Our goal is to study seeding for the offline GSF tracking with the new pixel detector.
- Specifically, we want to optimize the new pixel-matching scheme from HLT for use in off-line reconstruction.
- ► This Talk:
 - Show corrected performance comparisons between old and new seeding
 - Show reduction in number of seeds not resulting in GSF tracks
- Additional plots are available here

https://eg.fangmeier.tech/seeding_studies_2018_03_08_17/output/

N-HIT ELECTRON SEEDING

- 1. Using the beam spot, the SC position, and SC energy, propagate a path through the pixels.
- 2. Require the first hit to be within a $\delta \phi$ and δz window. ($\delta \phi$ and δR for FPIX)
- 3. δz window for first hit is huge as SC and beam spot positions give very little information about *z*.
- Forget the SC position, and propagate a new track based on the vertex and first hit positions, and the SC energy.
- Progress one-by-one through the remaining hits in the seed and require each one fit within a specified window around the track.
- Quit when all hits are matched, or a hit falls outside the window. No skipping is allowed.

Previous status-quo

- In a previous presentation¹, I showed efficiency vs. purity for
 - Old pair-match seeding (ElectronSeedProducer)
 - New triplet+ seeding (ElectronNHitSeedProducer) for several choices of matching windows.
- Old seeding produced far fewer fake (non-truth matched) seeds at similar efficiency.
- Unclear why. Perhaps not optimal matching windows?

¹https://indico.cern.ch/event/697074/contributions/2898322/attachments/1602057/2540261/main.pdf

H/E Requirement on Super-Clusters

- Investigating the cause of this revealed that the old seeding had applied a *H*/*E* < 0.15 cut on super-clusters.</p>
- After applying this same cut on the new seeds, the performance gap becomes negligible.
- The narrow working point of the new seeding uses HLT window sizes(see backup).
- Performance of the old seeding can be closely matched with the wide matching windows.

KINEMATIC DISTRIBUTIONS

Tracking Efficiency

Seed Counts

- The amount of electron seeds is dramatically reduced by the new matching scheme.
- Part of the motivation for use in HLT.
- ► Factor of ≈ 4 reduction comparing to the wide working point

Outlook

- NHit seeding can match (and perhaps even slightly improve upon) the old pair-match seeding.
- ► It can do this while producing far fewer candidate seeds.
- Next Steps:
 - Verify performance is still acceptable in high fake environments ($t\bar{t}$ for example)
 - Settle on an "optimal enough" set of windows
 - Decide on which CMSSW release to target and begin preparing (private branch/merge request/etc.)
- Other Thoughts
 - What are expert's opinions on continued window optimization? (Likely some small gains still to be had)
 - Are there other ideas for cross-checks to be done before proceeding further?

BACKUP

Definitions

- Sim-Track A track from a simulated electron originating from the luminous region of CMS (beam-spot +- 5σ)
- ECAL-Driven Seed A seed created via a matching procedure between Super-Clusters and General Tracking Seeds (Either from ElectronSeedProducer or ElectronNHitSeedProducer)
- ► GSF Track A track from GSF-Tracking resulting from an ECAL-Driven Seed
- Seeding Efficiency The fraction of Sim-Tracks that have a matching ECAL-Driven Seed (based on simhit-rechit linkage)
- GSF Tracking Efficiency The fraction of Sim-Tracks that have a matching GSF Track (again, based on simhit-rechit linkage)
- ECAL-Driven Seed Purity The fraction of ECAL-Driven Seeds that have a matching Sim-Track
- ► GSF Tracking Purity The fraction of GSF Tracks that have a matching Sim-Track

MATCHING WINDOW PARAMETERS

		extra-narrow	narrow(HLT)	wide	extra-wide
Hit 1	dPhiMaxHighEt	0.025	0.05	0.1	0.15
	dPhiMaxHighEtThres	20.0	20.0	20.0	20.0
	dPhiMaxLowEtGrad	-0.002	-0.002	-0.002	-0.002
	dRzMaxHighEt	9999.0	9999.0	9999.0	9999.0
	dRzMaxHighEtThres	0.0	0.0	0.0	0.0
	dRzMaxLowEtGrad	0.0	0.0	0.0	0.0
Hit 2	dPhiMaxHighEt	0.0015	0.003	0.006	0.009
	dPhiMaxHighEtThres	0.0	0.0	0.0	0.0
	dPhiMaxLowEtGrad	0.0	0.0	0.0	0.0
	dRzMaxHighEt	0.025	0.05	0.1	0.15
	dRzMaxHighEtThres	30.0	30.0	30.0	30.0
	dRzMaxLowEtGrad	-0.002	-0.002	-0.002	-0.002
Hit 3+	dPhiMaxHighEt	0.0015	0.003	0.006	0.009
	dPhiMaxHighEtThres	0.0	0.0	0.0	0.0
	dPhiMaxLowEtGrad	0.0	0.0	0.0	0.0
	dRzMaxHighEt	0.025	0.05	0.1	0.15
	dRzMaxHighEtThres	30.0	30.0	30.0	30.0
	dRzMaxLowEtGrad	-0.002	-0.002	-0.002	-0.002

NHit Seeding window parameters. Bold designates modified values.