Offline Electron Seeding Validation - Update

Caleb Fangmeier Ilya Kravchenko, Greg Snow

University of Nebraska - Lincoln

EGamma Workshop — November 21, 2017

INTRODUCTION

- Our goal is to study seeding for the offline GSF tracking with the new pixel detector.
- Specifically, we want to optimize the window sizes used in the new pixel-matching scheme already implemented in HLT.
- ► Since last update¹,
 - Migrated Code from 9_0_2 to 9_2_8
 - Integrated the new pixel matching into the trackingNtuple. (although still a work-in-progress)
 - Regenerated trackingNtuples for dataset

```
/ZToEE_NNPDF30_13TeV-powheg_M_120_200/
```

```
RunIISummer17DRStdmix-NZSFlatPU28to62_92X_upgrade2017_realistic_v10-v1/GEN-SIM-RAW
```

- Ongoing work happening here: https://github.com/cfangmeier/cmssw/tree/ValidationGsfTracks928_dev
- ► This Talk:
 - Description of current Offline electron seeding
 - Description of current HLT (future Offline) electron seeding
 - Plans for 2018

¹https://indico.cern.ch/event/662743/contributions/2744847/attachments/1534642/2403597/main.pdf

PAIR ELECTRON SEEDING I

Windows from https://indico.cern.ch/event/611042/contributions/2464057/attachments/1406271/ 2148742/ElectronTracking30112016.pdf

PAIR ELECTRON SEEDING III

TRIPLET ELECTRON SEEDING - SETUP

 Begin with ECAL super cluster and beam spot

TRIPLET ELECTRON SEEDING - INTRODUCE SEED

- Now, examine, one-by-one seeds from general tracking*
- Note that we do not look at all hits in an event, but rather rely on general tracking to identify seeds.

*initialStepSeeds, highPtTripletStepSeeds, mixedTripletStepSeeds, pixelLessStepSeeds, tripletElectronSeeds, pixelPairElectronSeeds, stripPairElectronSeeds

TRIPLET ELECTRON SEEDING - MATCH FIRST HIT

- Using the beam spot, the SC position, and SC energy, propagate a path through the pixels.
- Next, require the first hit to be within a $\delta \phi$ and δz window. ($\delta \phi$ and δR for FPIX)
- δz window for first hit is huge as SC and beam spot positions give very little information about z.

TRIPLET ELECTRON SEEDING - EXTRAPOLATE VERTEX

- Once we have a matched hit, use it with the SC position, to find the vertex z.
- Vertex x and y are still the beam spot's.
- ► Just a simple linear extrapolation.

TRIPLET ELECTRON SEEDING - MATCH OTHER HITS

- Now forget the SC position, and propagate a new track based on the vertex and first hit positions, and the SC energy.
- Progress one-by-one through the remaining hits in the seed and require each one fit within a specified window around the track.
- Quit when all hits are matched, or a hit falls outside the window. No skipping is allowed.
- However, *layer* skipping is not ruled out if the original seed is missing a hit in a layer

TRIPLET ELECTRON SEEDING - WINDOW SIZES

- The δφ and δR/z windows for each hit are defined using three parameters.
 - ▶ highEt
 - highEtThreshold
 - lowEtGradient
- From these, the window size is calculated as highEt + min(0, Et - highEtThreshold) * lowEtGradient.
- For the first hit, these parameters for the $\delta \phi$ window are,
 - ▶ highEt = 0.05
 - highEtThreshold = 20
 - lowEtGradient = -0.002
- For the first hit, these parameters for the $\delta \phi$ window are,

These parameters can be specified for each successive hit, and in bins of η , so optimization is a challenge!

TRIPLET ELECTRON SEEDING - HANDLE MISSING HITS

- Finally, calculate the expected number of hits based on the number of working pixel modules the track passes through.
- Require exact¹ number of matched hits depending on the expected number of hits.
 - ▶ If N_{exp} = 4, require N_{match} = 3
 ▶ If N_{exp} < 4, require N_{match} = 2
- If the seed passes all requirements, all information, including
 - Super cluster
 - Original Seed
 - Residuals (For both charge hypotheses)

are wrapped up and sent downstream to GSF tracking

 1 Exact, rather than minimum to deal with duplicate seeds in input collection. Could switch to minimum with offline cross-cleaned seeds.

Outlook and Plans for 2018 $% \left({{\rm{D}}} \right)$

- Construct framework to measure efficiencies and fake-rates using MC-truth information.
- Use this framework to identify sources of inefficiency.
- Finally, optimize the window sizes for offline reconstruction.