Offline Electron Seeding Validation - Update

Caleb Fangmeier Ilya Kravchenko, Greg Snow

University of Nebraska - Lincoln

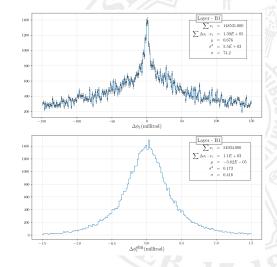
October 4, 2017

Introduction

- Our goal is to study seeding for the offline Gsf tracking with the new pixel detector.
- ▶ Previous talk¹ gave introduction/motivation to approach
- ► Since Then,
 - ► Migrated Code from 8_1_0 to 9_0_2
 - ► Regenerated trackingNtuples for dataset

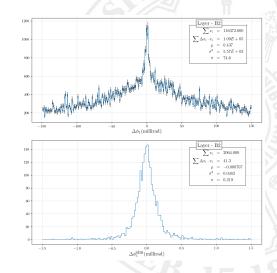
/DYJetsToLL_M-50.TuneCUETP8M1.13TeV-madgraphMLM-pythia8 /PhaseISpring17DR-FlatPU28to62HcalNZS_90X_upgrade2017_realistic_v20-v1/GEN-SIM-RAW

- \blacktriangleright Calculated $\Delta\phi_{1,2}/\Delta z_{1,2}$ for distances between extrapolated SC and reconstructed pixel hit
- ► Added additional detector information (Ladder/Blade) for matched hits

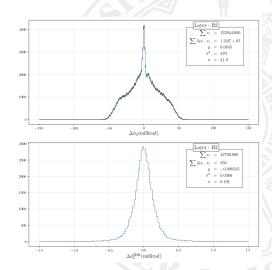

https://indico.cern.ch/event/616443/contributions/2669480/attachments/1496854/2329372/main.pdf

DEFINITIONS

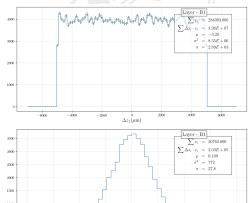
- $\blacktriangleright \ \Delta \phi/z_1$ Distance between RecHit and extrapolated impact position for first matched hit
- $\blacktriangleright \ \Delta \phi/z_2$ Distance between RecHit and extrapolated impact position for second matched hit
- lacktriangledown $\Delta\phi/z_1^{
 m sim}$ Distance between RecHit and SimHit for 1st innermost hit in Seed.
- $ightharpoonup \Delta\phi/z_2^{
 m sim}$ Distance between RecHit and SimHit for 2nd innermost hit in Seed.

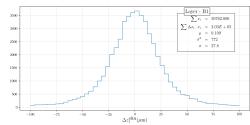

Comparing $\Delta\phi_1$ and $\Delta\phi_1^{\rm sim}$ Resolution

- $\qquad \qquad \bullet \ \, \sigma_{\Delta\phi_1}/\sigma_{\Delta\phi_1^{\rm sim}} \approx 175$
- ► But these are measuring quite different quantities!
- $\Delta\phi_1^{\rm sim}$ is effectively just the single-hit pixel resultion
- ▶ While $\Delta \phi_1$ is affected by SC position/energy resolution and beam spot.
- ➤ So not really an apples-to-apples comparison.

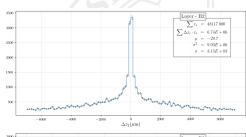

HITS IN BPIX LAYER 2

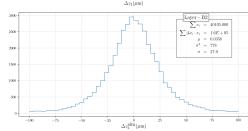
- Same as previous slide, but with hits in BPIX L2 instead of L1.
- Note that $\sigma_{\Delta\phi_1}$ is almost unchanged from the L1 value (74.2 millirad)
- ▶ However, $\sigma_{\Delta\phi_1^{\rm sim}}$ decreases by $\approx 1/r$
- This is because single-hit resultion is independent of layer.


What about 2nd Breakfast Hits?

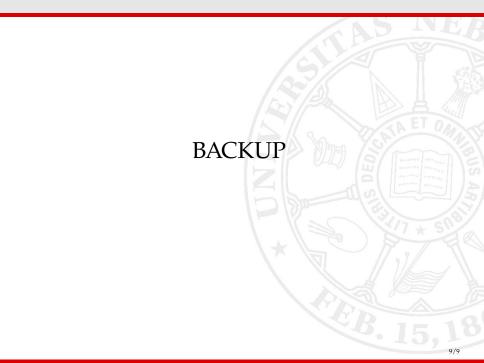

- $\sigma_{\Delta\phi_2}$ is about 3.4 times smaller than $\sigma_{\Delta\phi_1}$, but the width of the core is about the same.
- ► Interesting side-band feature. Do experts recognize this?

What about Δz ?


- ▶ The distribution of Δz_1 is essentially flat within the window (± 0.5 cm).
- ▶ Not surprising due to the rough extrapolation and high likelihood of unrelated hits in area of extrapolated point.

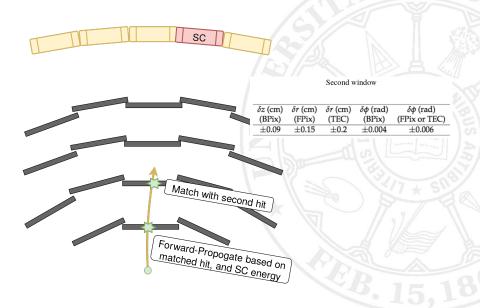


And finally, what about Δz for second hits?


- ► Current window size (±900µm) still seems appropriate, but maybe could be optimized?
- ► Δz_2^{sim} resolution almost identical to Δz_1^{sim}
- ► Implies single-hit resulation is independent of whether the hit is the 1st or 2nd innermost in seed

Outlook

- ► Equivalent studies for FPIX
- ► Define and measure hit inefficiencies
- ► Test independently effects of supercluster position and energy mis-measurement
- ► Optimize window sizes
- ► Test triplet (instead of pair) matching
- ► Suggestions (and priorities!) from experts?



GSF ELECTRON SEEDING I

 $Windows from \verb|https://indico.cern.ch/event/611042/contributions/2464057/attachments/1406271/2148742/ElectronTracking30112016.pdf$

GSF ELECTRON SEEDING II

GSF ELECTRON SEEDING III SC Search for tracker seeds that contain the pair of hits Tracker Seed with SC form Gsf Seed Hit matching to SC Hit in tracker seed