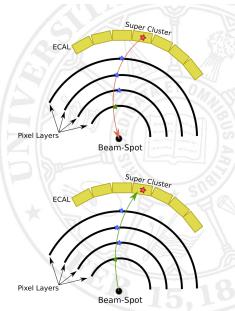
Offline Electron Seeding Validation - Update

Caleb Fangmeier Ilya Kravchenko, Greg Snow

University of Nebraska - Lincoln

EGM General Meeting - November 19, 2018


INTRODUCTION

- Our goal is to study seeding for the offline GSF tracking with the Phase I pixel detector.
- Specifically, we want to optimize the new pixel-matching scheme from HLT for use in off-line reconstruction.
- Previous presentation¹ showed efficiency/purity/fake-rate for proposed offline electron seeding working points.
- ► This Talk:
 - Explain "Hit Skipping" and demonstrate effects on seeding performance
 - Examine effects of adding pileup on seeding performance.

¹ https://indico.cern.ch/event/697084/#2-update-on-offline-electron-s

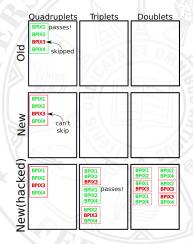
N-HIT ELECTRON SEEDING

- 1. Using the beam spot, the SC position, and SC energy, propagate a path through the pixels.
- 2. Require the first hit to be within a $\delta \phi$ and δz window. ($\delta \phi$ and δR for FPIX)
- 3. δz window for first hit is huge as SC and beam spot positions give very little information about *z*.
- Forget the SC position, and propagate a new track based on the vertex and first hit positions, and the SC energy.
- Progress one-by-one through the remaining hits in the seed and require each one fit within a specified window around the track.
- Quit when all hits are matched, or a hit falls outside the window. No skipping is allowed.

Hit-Skipping

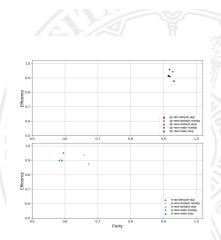
- ▶ Normally, general tracking seeds are made with an iterative procedure
- Each iteration masks hits from use in subsequent steps
- Reduces combinatorics for CKF tracking

pixelHits ---> Seed Step X Mask Hits —>initialSeeds initialStep highPtTripletStep mixedTripletStep tripletElectronSeeds pixelPairElectronSeeds


Each iteration works on a specific set of combinations of layers. eg. initialStep uses:

```
BPix1+BPix2+BPix3+BPix4
BPix1+BPix2+BPix3+FPix1_pos
BPix1+BPix2+BPix3+FPix1_neg
BPix1+BPix2+FPix1_pos+FPix2_pos
```

BPix1+BPix2+FPix1_neg+FPix2_neg BPix1+FPix1_pos+FPix2_pos+FPix3_pos BPix1+FPix1_neg+FPix2_neg+FPix3_neg

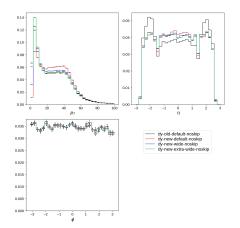

Hit-Skipping

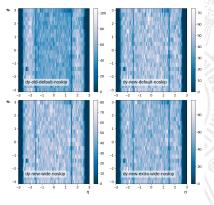
- When NHitElectronSeedProducer was implemented for HLT, hit skipping was not added.
- Consider an example configuration where we are generating first quadruplet, then triplet, and then finally doublet seeds, masking hits along the way.
- If we require at least 3 matched hits, the old method with hit skipping would create a seed of hits BPIX1, BPIX2, BPIX4.
- But new method *without* hit skipping wouldn't make any seed from these hits.
- The "hack" is to create seeds using only steps tripletElectronSeeds, and pixelPairElectronSeeds with no masking.
- Adding skipping and removing the hack would reduce cpu time from redundant seeds.

HIT-SKIPPING - PERFORMANCE

- Enabling hit skipping and removing hack reduces number of seeds by 36% to 51%.
- 3-5x fewer seeds with respect to old seeding
- Efficiency reduced by between 4% and 6% to align more with old seeding performance.
- ► Purity improved by about 1%.
- ▶ (table in backup)

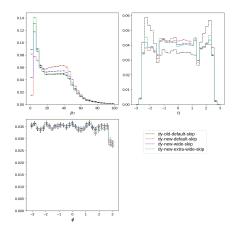
Process	Seeding Method	< N _{seeds} >(no-skip)	$< N_{seeds} >$ (with-skip)	Percent Reduction
tī	Old - default settings	-	12.69	0
	New - HLT settings	4.40	2.56	41%
	New - "wide" settings	7.28	4.65	36%
Drell-Yan	Old - default settings	-	11.40	
	New - HLT settings	4.70	2.32	51%
	New - "wide" settings	5.38	2.65	51%

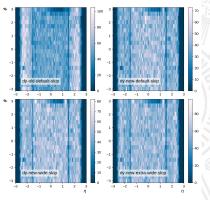

Adding Pileup


- The simhit-rechit linkage that was previously used in efficiency/purity measurements is not saved in GEN-SIM-RAW.
- ► Therefore, the DIGI step was re-run, but *only for the signal event* because GEN-SIM-RAW does not contain SIM information for pileup events.
- However, running this instead of the RAW2DIGI step discarded the previously mixed pileup in the RAW.
- So even though there is a PileupInfo collection with reasonable values, there's no actual pileup hits being used for tracking (caused quite some confusion for me).
- In the end, abandon simhit-rechit linkage and just use ΔR matching for efficiency/purity.
- Some technical details in backup.

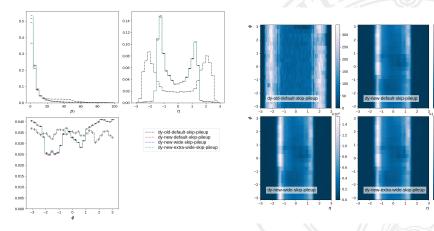
Adding Pileup - Issues

- Creating kinematic distributions raises some apparent issues with how the new seeding handles pileup.
- Next three slides show pt/eta/phi distributions of GSF tracks resulting from ECAL-Driven seeds


Adding Pileup - Issues - No Skipping, No Pileup



Looks basically ok, use this as a baseline for comparison.


Adding Pileup - Issues - With Skipping, No Pileup

• Concerning dip around $\phi = 3$ coming from $\eta \in (0.5, 1.5)$.

Adding Pileup - Issues - With Skipping, With Pileup


- Strangely non-flat φ distribution, manifests differently in both old and new seeding, but rather more pronounced in new.
- Features seem to be somewhat localized in $\phi \eta$, possibly some kind of detector effect?

600

400

2000

Adding Pileup - More Issues

Relative reduction of number of seeds gone. In fact, with pileup there is a 2.3 to 5 times increase in the number of seeds relative to old seeding method.

Conclusions & Outlook

- Reintroducing hit skipping in new seeding is implemented and has expected results.
- Analyzing MC with pileup mixed highlights potential issues with using new seeding for offline reconstruction.
- ► Further investigation is necessary to determine the source of the issues.
- Any ideas for checks or fixes are welcome!

Analysis and ploting code is available at https://git.fangmeier.tech/caleb/EGamma_ElectronTrackingValidation Additional plots are available at http://t3.unl.edu/-cfangmeier/eg/seeding_studies_2018_11_18_19/hists.html

BACKUP

Definitions

- Sim-Track A track from a simulated electron both originating from the luminous region of CMS (beam-spot +- 5σ) and having $|\eta| < 3.0$.
- ECAL-Driven Seed A seed created via a matching procedure between Super-Clusters and General Tracking Seeds (Either from ElectronSeedProducer or ElectronNHitSeedProducer). Must have HOE < 0.15.</p>
- ► GSF Track A track from GSF-Tracking resulting from an ECAL-Driven Seed
- GSF Tracking Efficiency The fraction of Sim-Tracks that have a matching GSF Track (based on ΔR matching)
- ► GSF Tracking Purity The fraction of GSF Tracks that have a matching Sim-Track
- GSF Tracking Fake Rate The fraction of nontruth-matched Super-Clusters which result in at least one GSF Track.

SEEDING PERFORMANCE

Sample	Working Point	Config	Efficiency	Purity	Fake Rate
	0		,	,	
Drell-Yan	old-default	skip	$91.60 \pm 0.51\%$	$91.50 \pm 0.52\%$	$57.62 \pm 1.23\%$
	old-default	skip-pileup	$90.94 \pm 0.51\%$	$79.75 \pm 0.49\%$	$59.19 \pm 1.26\%$
	new-default	noskip	$94.32 \pm 0.51\%$	$92.82 \pm 0.52\%$	$39.46 \pm 1.23\%$
	new-default	skip	$88.01 \pm 0.51\%$	$93.18 \pm 0.54\%$	$35.63 \pm 1.23\%$
	new-default	skip-pileup	$88.15 \pm 0.51\%$	$18.35 \pm 0.24\%$	$92.48 \pm 1.26\%$
	new-wide	noskip	$95.90 \pm 0.51\%$	$91.82 \pm 0.51\%$	$49.83 \pm 1.23\%$
	new-wide	skip	$91.23 \pm 0.51\%$	$91.94 \pm 0.52\%$	$47.24 \pm 1.23\%$
	new-wide	skip-pileup	$92.81 \pm 0.51\%$	$8.97\pm0.16\%$	$99.12 \pm 1.26\%$
	new-extra-wide	noskip	$96.22 \pm 0.51\%$	$91.27 \pm 0.51\%$	$57.14 \pm 1.23\%$
	new-extra-wide	skip	$91.89 \pm 0.51\%$	$91.21 \pm 0.52\%$	$54.39 \pm 1.23\%$
	new-extra-wide	skip-pileup	$94.39 \pm 0.51\%$	$5.92\pm0.13\%$	$99.74 \pm 1.26\%$
$t\bar{t}$	old-default	skip	$90.13 \pm 0.77\%$	$58.25 \pm 0.62\%$	$53.85 \pm 0.54\%$
	old-default	skip-pileup	$89.08 \pm 0.77\%$	$45.61 \pm 0.55\%$	$56.34 \pm 0.59\%$
	new-default	noskip	$93.59 \pm 0.77\%$	$65.92 \pm 0.65\%$	$29.13 \pm 0.54\%$
	new-default	skip	$87.56 \pm 0.77\%$	$67.21 \pm 0.68\%$	$24.82 \pm 0.54\%$
	new-default	skip-pileup	$87.78 \pm 0.77\%$	$6.85\pm0.21\%$	$89.38 \pm 0.59\%$
	new-wide	noskip	$95.10 \pm 0.77\%$	$59.54 \pm 0.61\%$	$48.03 \pm 0.54\%$
	new-wide	skip	$90.12 \pm 0.77\%$	$59.04 \pm 0.62\%$	$44.73 \pm 0.54\%$
	new-wide	skip-pileup	$91.47 \pm 0.77\%$	$3.53\pm0.15\%$	$98.30 \pm 0.60\%$
	new-extra-wide	noskip	$95.41 \pm 0.77\%$	$56.63 \pm 0.59\%$	$60.23 \pm 0.54\%$
	new-extra-wide	skip	$90.66 \pm 0.77\%$	$55.02 \pm 0.60\%$	$58.61 \pm 0.54\%$
	new-extra-wide	skip-pileup	$92.66 \pm 0.78\%$	$2.52\pm0.12\%$	$99.35 \pm 0.60\%$

MATCHING WINDOW PARAMETERS

		narrow	default (HLT)	wide	extra-wide
Hit 1	dPhiMaxHighEt	0.025	0.05	0.1	0.15
	dPhiMaxHighEtThres	20.0	20.0	20.0	20.0
	dPhiMaxLowEtGrad	-0.002	-0.002	-0.002	-0.002
	dRzMaxHighEt	9999.0	9999.0	9999.0	9999.0
	dRzMaxHighEtThres	0.0	0.0	0.0	0.0
	dRzMaxLowEtGrad	0.0	0.0	0.0	0.0
Hit 2	dPhiMaxHighEt	0.0015	0.003	0.006	0.009
	dPhiMaxHighEtThres	0.0	0.0	0.0	0.0
	dPhiMaxLowEtGrad	0.0	0.0	0.0	0.0
	dRzMaxHighEt	0.025	0.05	0.1	0.15
	dRzMaxHighEtThres	30.0	30.0	30.0	30.0
	dRzMaxLowEtGrad	-0.002	-0.002	-0.002	-0.002
Hit 3+	dPhiMaxHighEt	0.0015	0.003	0.006	0.009
	dPhiMaxHighEtThres	0.0	0.0	0.0	0.0
	dPhiMaxLowEtGrad	0.0	0.0	0.0	0.0
	dRzMaxHighEt	0.025	0.05	0.1	0.15
	dRzMaxHighEtThres	30.0	30.0	30.0	30.0
	dRzMaxLowEtGrad	-0.002	-0.002	-0.002	-0.002

NHit Seeding window parameters. Bold designates modified values.

SAMPLES

- /ZToEE_NNPDF30_13TeV-powheg_M_120_200/RunIISummer17DRStdmix-NZSFlatPU28to62.92X_upgrade2017_realistic_v10-v1
- /TT.TuneCUETP8M2T4_13TeV-powheg-pythia8/RunIISummer17DRStdmix-NZSFlatPU28to62_92X_upgrade2017_realistic_v10-v2

CMSDRIVER INVOCATIONS

$\texttt{RAW} {\rightarrow} Step2 \ (old)$

```
cmsDriver.py RAW2Step2 \
    --mc \
    --conditions 92X_upgrade2017_realistic_v10 \
    --era Run2_2017 \
    --eventcontent FEVTDEBUG \
    --datatier GEN-SIM-DIGI-RAW \
    --step DIGI:pdigi_valid,L1,DIGI2RAW \
    --geometry DB:Extended \
    --filein file:input.root \
    --fileout file:step2.root \
    --rinlwscheduled
```

Step2→TrackingNtuple (old)

```
cmsDriver.py Step2ToTrackingNtuple \ from TrackingNtuple
--mc \
--mc \
--conditions 92X_upgrade2017_realistic_v10 \
--erea Run2_2017 \
--erentcontent RECOSIM_MINIAODSIM_DQM \
--datatier GEN-SIM-RECO_MINIAODSIM_DQMIO \
--step RAW2DIGI_LIReco, RECO_BI_PAT,VALIDATION:@standardValidation+@miniAODValidation \
--filein file:step2.root \
--fileout file:trackingNtuple.root \
--customise Validation/RecoTrack/customiseTrackingNtuple.customiseTrackingNtuple \
--runUnscheduled
```

RAW→TrackingNtuple (new)

```
cmsDriver.py RAW2TrackingNtuple \
    --mc \
    --mc \
    --conditions 92X_upgrade2017_realistic_v10 \
    --eren Run2_2017 \
    --erentcontent FEVTDEBUG \
    --datatier GEN-SIM-RECO \
    --step RAW2DIGI,REC0,EI,PAT,VALIDATION \
    --customiseTrackingNtuple \
    --filein file:input.root \
    --fileout file:trackingNtuple.root \
```

```
--runUnscheduled
```

Additionally, hacks to remove hit truth dependencies from TrackingNtuple