% rubber: module pdftex \documentclass[english,aspectratio=43]{beamer} \usepackage{graphicx} \usepackage{amssymb} \usepackage{booktabs} \usepackage{siunitx} \usepackage{subcaption} \usepackage{marvosym} \usepackage{verbatim} \newcommand{\pb}{\si{\pico\barn}}% \newcommand{\fb}{\si{\femto\barn}}% \newcommand{\invfb}{\si{\per\femto\barn}} \newcommand{\GeV}{\si{\giga\electronvolt}} \usetheme[]{bjeldbak} \begin{document} \title[e Reco. Validation]{Offline Electron Reconstruction Validation} \author[C. Fangmeier]{\textbf{Caleb Fangmeier} \\ Ilya Kravchenko, Greg Snow} \institute[UNL]{University of Nebraska \-- Lincoln} \date{July 21, 2017} \titlegraphic{% \begin{figure} \includegraphics[width=1in]{CMSlogo.png}\hspace{0.75in}\includegraphics[width=1in]{nebraska-n.png} \end{figure} } \begin{frame}[noframenumbering,plain] \titlepage% \end{frame} \begin{frame}{Introduction} \begin{itemize} \item Our goal is to study \textbf{seeding} for the \textbf{offline} Gsf tracking with the \textbf{new pixel detector}. \item Ongoing studies\footnote{\url{https://indico.cern.ch/event/613833/contributions/2646392/attachments/1486134/2307836/EGMHLT_PixelMatching_Jun30.pdf}} in HLT examine the resolution of RecHits used in Gsf Tracking. \item In those studies, the resolution is computed by measuring the distance between the \textbf{RecHits} and the extrapolated paths from ECAL \textbf{super-clusters} (SCs). \item For \textbf{offline} reconstruction, we compute residuals by comparing the position of \textbf{RecHits} and associated \textbf{SimHits}. \item Knowing these resolutions is important in choosing the size of search windows in the hit matching algorithm used in electron reconstruction. \end{itemize} \end{frame} \begin{frame}{Introduction} \begin{itemize} \item We use Rafael Lopes de Sa's analysis setup\footnote{\url{https://github.com/rafaellopesdesa/cmssw/tree/ValidationGsfTracks81X}} that is derived from the standard offline tracking reconstruction tool \texttt{TrackingNtuple} from \texttt{Validation/RecoTrack}. \item Source dataset: \\ {\scriptsize \texttt{/DYJetsToLL\_M-50\_TuneCUETP8M1\_13TeV-madgraphMLM-pythia8/\\ PhaseIFall16DR-FlatPU28to62HcalNZSRAW\_81X\_upgrade2017\_realistic\_v26-v1/\\ GEN-SIM-RAW}} \item Using Release \texttt{CMSSW\_8\_1\_0} \item Figures in this talk use 31790 events (could be re-run with more) \end{itemize} \end{frame} \begin{frame}{Gsf Electron Seeding I} \begin{columns} \begin{column}{0.75\textwidth} \begin{figure} \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding1.png} \end{figure} \end{column} \begin{column}{0.25\textwidth} \begin{figure} \hspace{-1in} \vspace{-1in} \includegraphics[width=1.8\textwidth]{diagrams/window1.png} \end{figure} \end{column} \end{columns} \vfill \footnotesize{Windows from \url{https://indico.cern.ch/event/611042/contributions/2464057/attachments/1406271/2148742/ElectronTracking30112016.pdf}} \end{frame} \begin{frame}{Gsf Electron Seeding II} \begin{columns} \begin{column}{0.66\textwidth} \begin{figure} \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding2.png} \end{figure} \end{column} \begin{column}{0.33\textwidth} \begin{figure} \hspace{-0.75in} \vspace{1in} \includegraphics[width=1.5\textwidth]{diagrams/window2.png} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{Gsf Electron Seeding III} \begin{center} \begin{figure} \includegraphics[width=\textwidth]{diagrams/Gsf_Seeding3.png} \end{figure} \end{center} \end{frame} \begin{frame}{TrackingNtuple} The \texttt{TrackingNtuple} format contains (among others) the below crosslinked collections \begin{center} \begin{figure} \includegraphics[width=\textwidth]{diagrams/TrackingNtuple.png} \end{figure} \end{center} \end{frame} \begin{frame}{Finding \texttt{SimHit}/\texttt{RecHit} Pairs} To find residuals for calculating resolutions, require a pair containing 1 \texttt{RecHit} and 1 \texttt{SimHit}. Procedure is as follows: \begin{enumerate} \item For each \texttt{Track}, get it's \texttt{Seed} (unique) \item For each \texttt{RecHit} in the \texttt{Seed}, require \begin{itemize} \item It is in the specified subdetector (e.g. BPIX Layer 1) \item It is the 1st/2nd hit in the \texttt{Seed}. \item It is matched to at least one \texttt{SimHit}. \end{itemize} \item For each \texttt{RecHit} (\textbf{B}) passing the above, take the first matched \texttt{SimHit} (\textbf{A}). \item Now look through all \texttt{SimHits} associated with \texttt{SimTracks} associated with the original \texttt{Track}. If \textbf{A} exists in this set. Make a pair of \texttt{SimHit} \textbf{A} and \texttt{RecHit} \textbf{B}. \end{enumerate} \end{frame} \begin{frame}{Finding \texttt{SimHit}/\texttt{RecHit} Pairs} \begin{center} \begin{figure} \includegraphics[width=\textwidth]{diagrams/TrackingNtuple_traversal.png} \end{figure} \end{center} \end{frame} \begin{frame}{BPIX Hit 1 Resolution} \begin{figure} \centering \includegraphics[height=0.8\textheight]{figures/first_hits.png} \end{figure} \end{frame} \begin{frame}{BPIX Hit 1 Resolution vs. $\eta$} \begin{figure} \centering \includegraphics[height=0.8\textheight]{figures/first_hits_v_eta.png} \end{figure} \end{frame} \begin{frame}{BPIX Hit 2 Resolution} \begin{figure} \centering \includegraphics[height=0.8\textheight]{figures/second_hits.png} \end{figure} \end{frame} \begin{frame}{BPIX Hit 2 Resolution vs. $\eta$} \begin{figure} \centering \includegraphics[height=0.8\textheight]{figures/second_hits_v_eta.png} \end{figure} \end{frame} \begin{frame}{Resolution dependence on even/odd ladder number} \begin{figure} \centering \includegraphics[width=0.8\textwidth]{diagrams/dphi_v_ladder_dylan.png} \end{figure} {\small \begin{itemize} \item Above From Dylan Rankin's June 30 Presentation. (See slide 1) \item We have slightly different definitions of $\Delta\phi_1$, but wanted to investigate ourselves. \end{itemize} } \end{frame} \begin{frame}{Resolution dependence on even/odd ladder number} \begin{figure} \centering \includegraphics[height=0.8\textheight]{figures/delta_phi_z_v_ladder.png} \end{figure} \end{frame} \begin{frame}{Conclusions} \begin{itemize} \item Analysis machinery for offline electron RECO studies with MC truth is in place. \item Preliminary plots of $\Delta\phi_{1/2}$ and $\Delta z_{1/2}$ for BPIX Layers 1/2 are shown. \item Code for this analysis is here: \\ \footnotesize \begin{center}\url{git.fangmeier.tech/caleb/EGamma\_ElectronTrackingValidation}\end{center} \item next to come \begin{itemize} \item run on larger event samples (\texttt{trackingNtuples} are generated, just need to use) \item include FPIX \item investigate reasons for rec hit inefficiencies \item introduce triplet-based pixel matching for the seeds and repeat the studies \end{itemize} % \item What specific figures/measurements are of interest to experts? \end{itemize} \end{frame} \end{document}