|
@@ -36,8 +36,8 @@
|
|
|
|
|
|
\begin{frame}{Introduction}
|
|
|
\begin{itemize}
|
|
|
- \item Our goal is to study \textbf{seeding} for the \textbf{offline} gsf tracking with the \textbf{new pixel detector}.
|
|
|
- \item Ongoing studies\footnote{\url{https://indico.cern.ch/event/613833/contributions/2646392/attachments/1486134/2307836/EGMHLT_PixelMatching_Jun30.pdf}} in HLT examine the resolution of RecHits used in GSF Tracking.
|
|
|
+ \item Our goal is to study \textbf{seeding} for the \textbf{offline} Gsf tracking with the \textbf{new pixel detector}.
|
|
|
+ \item Ongoing studies\footnote{\url{https://indico.cern.ch/event/613833/contributions/2646392/attachments/1486134/2307836/EGMHLT_PixelMatching_Jun30.pdf}} in HLT examine the resolution of RecHits used in Gsf Tracking.
|
|
|
\item In those studies, the resolution is computed by measuring the distance between the \textbf{RecHits} and the extrapolated paths from ECAL \textbf{super-clusters} (SCs).
|
|
|
\item For \textbf{offline} reconstruction, we compute residuals by comparing the position of \textbf{RecHits} and associated \textbf{SimHits}.
|
|
|
\item Knowing these resolutions is important in choosing the size of search windows in the hit matching algorithm used in electron reconstruction.
|
|
@@ -53,7 +53,7 @@
|
|
|
\end{itemize}
|
|
|
\end{frame}
|
|
|
|
|
|
-\begin{frame}{Gsf Electron Seeding}
|
|
|
+\begin{frame}{Gsf Electron Seeding I}
|
|
|
\begin{columns}
|
|
|
\begin{column}{0.75\textwidth}
|
|
|
\begin{figure}
|
|
@@ -72,7 +72,7 @@
|
|
|
\footnotesize{Windows from \url{https://indico.cern.ch/event/611042/contributions/2464057/attachments/1406271/2148742/ElectronTracking30112016.pdf}}
|
|
|
\end{frame}
|
|
|
|
|
|
-\begin{frame}{Gsf Electron Seeding}
|
|
|
+\begin{frame}{Gsf Electron Seeding II}
|
|
|
\begin{columns}
|
|
|
\begin{column}{0.66\textwidth}
|
|
|
\begin{figure}
|
|
@@ -89,7 +89,7 @@
|
|
|
\end{columns}
|
|
|
\end{frame}
|
|
|
|
|
|
-\begin{frame}{Gsf Electron Seeding}
|
|
|
+\begin{frame}{Gsf Electron Seeding III}
|
|
|
\begin{center}
|
|
|
\begin{figure}
|
|
|
\includegraphics[width=\textwidth]{diagrams/Gsf_Seeding3.png}
|
|
@@ -123,7 +123,6 @@ To find residuals for calculating resolutions, require a pair containing 1
|
|
|
\texttt{SimTracks} associated with the original \texttt{Track}. If
|
|
|
\textbf{A} exists in this set. Make a pair of \texttt{SimHit} \textbf{A}
|
|
|
and \texttt{RecHit} \textbf{B}.
|
|
|
- \item Go back to 1.
|
|
|
\end{enumerate}
|
|
|
\end{frame}
|
|
|
|
|
@@ -163,6 +162,19 @@ To find residuals for calculating resolutions, require a pair containing 1
|
|
|
\end{figure}
|
|
|
\end{frame}
|
|
|
|
|
|
+\begin{frame}{Resolution dependence on even/odd ladder number}
|
|
|
+ \begin{figure}
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=0.8\textwidth]{diagrams/dphi_v_ladder_dylan.png}
|
|
|
+ \end{figure}
|
|
|
+ {\small
|
|
|
+ \begin{itemize}
|
|
|
+ \item Above From Dylan Rankin's June 30 Presentation. (See slide 1)
|
|
|
+ \item We have slightly different definitions of $\Delta\phi_1$, but wanted to investigate ourselves.
|
|
|
+ \end{itemize}
|
|
|
+ }
|
|
|
+\end{frame}
|
|
|
+
|
|
|
\begin{frame}{Resolution dependence on even/odd ladder number}
|
|
|
\begin{figure}
|
|
|
\centering
|
|
@@ -173,7 +185,7 @@ To find residuals for calculating resolutions, require a pair containing 1
|
|
|
|
|
|
\begin{frame}{Conclusions}
|
|
|
\begin{itemize}
|
|
|
- \item Analysis machinery for offline electron reco studies with MC truth is in place.
|
|
|
+ \item Analysis machinery for offline electron RECO studies with MC truth is in place.
|
|
|
\item Preliminary plots of $\Delta\phi_{1/2}$ and $\Delta z_{1/2}$ for BPIX
|
|
|
Layers 1/2 are shown.
|
|
|
\item Code for this analysis is here: \\ \footnotesize
|