瀏覽代碼

Refactor slides based on Ilya's feedback

Caleb Fangmeier 6 年之前
父節點
當前提交
c46db16eea
共有 2 個文件被更改,包括 82 次插入38 次删除
  1. 二進制
      docs/presentations/2018_04_17/main.pdf
  2. 82 38
      docs/presentations/2018_04_17/main.tex

二進制
docs/presentations/2018_04_17/main.pdf


+ 82 - 38
docs/presentations/2018_04_17/main.tex

@@ -51,8 +51,11 @@
     \item Specifically, we want to optimize the new pixel-matching scheme from HLT for use in off-line reconstruction.
     \item This Talk:
       \begin{itemize}
-        \item Show performance comparison between new and old seeding in fake-rich environment
-        \item Show alternative efficiency/purity measurements using $\Delta R$ matching
+        \item Show performance comparison between old seeding two working points of the new seeding in fake-rich environment
+          \begin{itemize}
+            \item New Seeding working points: \texttt{narrow} (HLT default settings), and \texttt{wide} (double window sizes with respect to \texttt{narrow})
+          \end{itemize}
+        \item Show alternative efficiency/purity measurements using $\Delta R$ truth-matching between \texttt{SimTracks} and \texttt{GSFTracks}
       \end{itemize}
   \end{itemize}
 \end{frame}
@@ -83,6 +86,18 @@
   \end{columns}
 \end{frame}
 
+\begin{frame}{Definitions}
+  \begin{itemize}
+    \item \textbf{Sim-Track \--} A track from a simulated electron originating from the luminous region of CMS (beam-spot +- 5$\sigma$)
+    \item \textbf{ECAL-Driven Seed \--} A seed created via a matching procedure between Super-Clusters and General Tracking Seeds (Either from \texttt{ElectronSeedProducer} or \texttt{ElectronNHitSeedProducer})
+    \item \textbf{GSF Track \--} A track from GSF-Tracking resulting from an \textbf{ECAL-Driven Seed}
+    % \item \textbf{Seeding Efficiency \--} The fraction of \textbf{Sim-Tracks} that have a matching \textbf{ECAL-Driven Seed} (based on simhit-rechit linkage or $\Delta R$ matching)
+    \item \textbf{GSF Tracking Efficiency \--} The fraction of \textbf{Sim-Tracks} that have a matching \textbf{GSF Track} (again, based on simhit-rechit linkage or $\Delta R$ matching)
+    % \item \textbf{ECAL-Driven Seed Purity \--} The fraction of \textbf{ECAL-Driven Seeds} that have a matching \textbf{Sim-Track}
+    \item \textbf{GSF Tracking Purity \--} The fraction of \textbf{GSF Tracks} that have a matching \textbf{Sim-Track}
+  \end{itemize}
+\end{frame}
+
 \begin{frame}{Previous status-quo}
   \begin{columns}
     \begin{column}{0.45\textwidth}
@@ -107,14 +122,34 @@
 \footnotetext[1]{\tiny \url{https://indico.cern.ch/event/697077/contributions/2936039/attachments/1618649/2573874/main.pdf}}
 \end{frame}
 
-\begin{frame}{Relative Performance}
+\begin{frame}{Relative Performance - GSF Tracking Efficiency}
   \begin{columns}
+    \begin{column}{0.5\textwidth}
+      \begin{itemize}
+        \item Figure shows GSF Tracking efficiency vs kinematic variables of the electron \texttt{SimTrack}
+        \item Efficiency is more or less the same for both DY and $t\bar{t}$ environments and for both algorithms and working points.
+        \item Largest (statistically significant) differences appear at low $p_T$ and in the barrel/endcap transition region.
+      \end{itemize}
+    \end{column}
     \begin{column}{0.5\textwidth}
       \begin{figure}
         GSF Tracking Efficiency
         \includegraphics[width=1.0\textwidth]{live_figures/tracking_eff_all.png}
       \end{figure}
     \end{column}
+  \end{columns}
+\end{frame}
+
+\begin{frame}{Relative Performance - GSF Track Purity}
+  \begin{columns}
+    \begin{column}{0.5\textwidth}
+      \begin{itemize}
+        \item Figure shows GSF Tracking purity vs kinematic variables of the \texttt{GSFTrack}
+        \item Clearly purity is affected by the higher fake environment in the $t\bar{t}$ sample.
+        \item Note how the \texttt{narrow} working point of the new seeding (green) has significantly better purity than the \texttt{wide} working point or the old seeding.
+        \item Purity loss at high $p_T$ is a feature of the shared-hits matching between \texttt{SimTracks} and \texttt{GSFTracks}.
+      \end{itemize}
+    \end{column}
     \begin{column}{0.5\textwidth}
       \begin{figure}
         GSF Tracking Purity
@@ -122,10 +157,6 @@
       \end{figure}
     \end{column}
   \end{columns}
-
-  \begin{center} {\huge Samples } \end{center}
-  {\tiny /ZToEE\_NNPDF30\_13TeV-powheg\_M\_120\_200/RunIISummer17DRStdmix-NZSFlatPU28to62\_92X\_upgrade2017\_realistic\_v10-v1} \\
-  {\tiny /TT\_TuneCUETP8M2T4\_13TeV-powheg-pythia8/RunIISummer17DRStdmix-NZSFlatPU28to62\_92X\_upgrade2017\_realistic\_v10-v2}
 \end{frame}
 
 \begin{frame}{$\Delta R$ Matching}
@@ -144,10 +175,9 @@
     \end{column}
   \end{columns}
   \begin{itemize}
-    \item Previous efficiency/purity defintions based on shared tracker hits between \texttt{SimTracks} and \texttt{GSFTracks}.
-    \item An alternative is to use simple $\Delta R$ matching.
-    \item Above figures use $\Delta R < 0.2$ for matching criteria.
-    \item Overall numbers improve and show fewer detector effects.
+    \item Previous efficiency/purity definitions based on shared tracker hits between \texttt{SimTracks} and \texttt{GSFTracks}.
+    \item An alternative is to use simple $\Delta R<0.2$ matching.
+    \item Overall numbers improve and purity no longer drops at high $p_T$.
   \end{itemize}
 \end{frame}
 
@@ -157,14 +187,6 @@
 \begin{table}[]
   \centering
   \begin{tabular}{@{}llrr} \toprule
-Sample & Algo & Efficiency (Hit Matched) & Purity (Hit Matched) \\ \midrule
-$Z\rightarrow ee$ & \texttt{old-seeding} & $88.05\pm0.28\%$ & $90.30\pm0.29\%$ \\
-                  & \texttt{narrow}      & $86.63\pm0.28\%$ & $90.69\pm0.29\%$ \\
-                  & \texttt{wide}        & $88.01\pm0.28\%$ & $90.43\pm0.29\%$ \\
-$t\bar{t}$        & \texttt{old-seeding} & $88.06\pm0.77\%$ & $52.35\pm0.60\%$ \\
-                  & \texttt{narrow}      & $86.89\pm0.79\%$ & $60.56\pm0.67\%$ \\
-                  & \texttt{wide}        & $88.30\pm0.77\%$ & $54.38\pm0.61\%$ \\
-\toprule
 Sample & Algo & Efficiency ($\Delta R$ Matched) & Purity ($\Delta R$ Matched) \\ \midrule
 $Z\rightarrow ee$ & \texttt{old-seeding} & $96.08\pm0.28\%$ & $99.54\pm0.29\%$ \\
                   & \texttt{narrow}      & $94.49\pm0.28\%$ & $99.72\pm0.29\%$ \\
@@ -174,18 +196,24 @@ $t\bar{t}$        & \texttt{old-seeding} & $94.84\pm0.77\%$ & $57.49\pm0.60\%$ \
                   & \texttt{wide}        & $95.06\pm0.77\%$ & $59.52\pm0.61\%$ \\
   \end{tabular}
 \end{table}
-Note that the \texttt{wide} working point of the new seeding matches the \texttt{old-seeding} within errors except for purity is $\approx 2$\% better in the $t\bar{t}$ sample.
+\begin{itemize}
+    \item The HLT default settings (\texttt{narrow}) of the new pixel matching
+      scheme yield non-trivially better purity at the loss of some efficiency
+      with respect to both the old seeding and the \texttt{wide} working point.
+    \item The \texttt{wide} working point of the new seeding matches the
+      \texttt{old-seeding} within errors except for purity is $\approx 2$\%
+      better in the $t\bar{t}$ sample
+\end{itemize}
   \end{center}
 \end{frame}
 
 \begin{frame}{Conclusions \& Outlook}
   \begin{itemize}
-    \item The new seeding algorithm at the \texttt{wide} working point has been
-      verified to perform as well as, and in some cases better, than the
-      current pair seeding based on MC studies in both low and high purity
-      environments.
-    \item Relative performance is not an artifact of Hit Matching, but can be reproduced with simple $\Delta R$ matching.
-    \item Unless there are objections, propose to move forward with implementing the new algorithm as the default in the next available SW release.
+    \item The new seeding algorithm has been verified to perform as well as,
+      and in some cases better, than the current pair seeding based on MC
+      studies in both low and high purity environments.
+    \item Now the question is which working point (\texttt{wide} or \texttt{narrow}) is preferable?
+    \item Unless there are objections, propose to move forward with implementing the new algorithm as the default in the next available CMSSW release.
   \end{itemize}
 \end{frame}
 
@@ -198,18 +226,6 @@ Note that the \texttt{wide} working point of the new seeding matches the \texttt
   \end{center}
 \end{frame}
 
-\begin{frame}{Definitions}
-  \begin{itemize}
-    \item \textbf{Sim-Track \--} A track from a simulated electron originating from the luminous region of CMS (beam-spot +- 5$\sigma$)
-    \item \textbf{ECAL-Driven Seed \--} A seed created via a matching procedure between Super-Clusters and General Tracking Seeds (Either from \texttt{ElectronSeedProducer} or \texttt{ElectronNHitSeedProducer})
-    \item \textbf{GSF Track \--} A track from GSF-Tracking resulting from an \textbf{ECAL-Driven Seed}
-    \item \textbf{Seeding Efficiency \--} The fraction of \textbf{Sim-Tracks} that have a matching \textbf{ECAL-Driven Seed} (based on simhit-rechit linkage)
-    \item \textbf{GSF Tracking Efficiency \--} The fraction of \textbf{Sim-Tracks} that have a matching \textbf{GSF Track} (again, based on simhit-rechit linkage)
-    \item \textbf{ECAL-Driven Seed Purity \--} The fraction of \textbf{ECAL-Driven Seeds} that have a matching \textbf{Sim-Track}
-    \item \textbf{GSF Tracking Purity \--} The fraction of \textbf{GSF Tracks} that have a matching \textbf{Sim-Track}
-  \end{itemize}
-\end{frame}
-
 \begin{frame}{Overall Performance}
   \begin{columns}
     \begin{column}{0.5\textwidth}
@@ -257,6 +273,34 @@ Hit 3+ & dPhiMaxHighEt & \textbf{0.0015} & \textbf{0.003} & \textbf{0.006} & \te
 \texttt{NHit} Seeding window parameters. Bold designates modified values.
 \end{frame}
 
+\begin{frame}{Overall Performance - Hit-Matching}
+  \begin{center}
+    Integrating over all tracks with $p_T>20$GeV and $\eta<2.4$ yields the performance numbers below.
+\begin{table}[]
+  \centering
+  \begin{tabular}{@{}llrr} \toprule
+Sample & Algo & Efficiency (Hit Matched) & Purity (Hit Matched) \\ \midrule
+$Z\rightarrow ee$ & \texttt{old-seeding} & $88.05\pm0.28\%$ & $90.30\pm0.29\%$ \\
+                  & \texttt{narrow}      & $86.63\pm0.28\%$ & $90.69\pm0.29\%$ \\
+                  & \texttt{wide}        & $88.01\pm0.28\%$ & $90.43\pm0.29\%$ \\
+$t\bar{t}$        & \texttt{old-seeding} & $88.06\pm0.77\%$ & $52.35\pm0.60\%$ \\
+                  & \texttt{narrow}      & $86.89\pm0.79\%$ & $60.56\pm0.67\%$ \\
+                  & \texttt{wide}        & $88.30\pm0.77\%$ & $54.38\pm0.61\%$ \\
+  \end{tabular}
+\end{table}
+Note that the \texttt{wide} working point of the new seeding matches the \texttt{old-seeding} within errors except for purity is $\approx 2$\% better in the $t\bar{t}$ sample.
+  \end{center}
+\end{frame}
+
+\begin{frame}{Samples}
+  \begin{itemize}
+    \item {\tiny /ZToEE\_NNPDF30\_13TeV-powheg\_M\_120\_200/RunIISummer17DRStdmix-NZSFlatPU28to62\_92X\_upgrade2017\_realistic\_v10-v1}
+
+    \item {\tiny /TT\_TuneCUETP8M2T4\_13TeV-powheg-pythia8/RunIISummer17DRStdmix-NZSFlatPU28to62\_92X\_upgrade2017\_realistic\_v10-v2}
+  \end{itemize}
+
+\end{frame}
+
 \backupend
 
 \end{document}