|
@@ -149,8 +149,8 @@ def calc_window(et, eta, hit, variable, cut_sel):
|
|
|
|
|
|
|
|
|
|
def hist_integral_ratio(num, den):
|
|
def hist_integral_ratio(num, den):
|
|
- num_int = num.get_integral()
|
|
|
|
- den_int = den.get_integral()
|
|
|
|
|
|
+ num_int = num.integral
|
|
|
|
+ den_int = den.integral
|
|
|
|
|
|
ratio = num_int / den_int
|
|
ratio = num_int / den_int
|
|
error = np.sqrt(den_int) / den_int # TODO: Check this definition of error
|
|
error = np.sqrt(den_int) / den_int # TODO: Check this definition of error
|
|
@@ -166,15 +166,19 @@ def center_text(x, y, txt, **kwargs):
|
|
def hist_plot(h: Hist1D, *args, include_errors=False, line_width=1, **kwargs):
|
|
def hist_plot(h: Hist1D, *args, include_errors=False, line_width=1, **kwargs):
|
|
""" Plots a 1D ROOT histogram object using matplotlib """
|
|
""" Plots a 1D ROOT histogram object using matplotlib """
|
|
|
|
|
|
- counts = h.get_counts()
|
|
|
|
- edges = h.get_edges()
|
|
|
|
|
|
+ counts = h.counts
|
|
|
|
+ edges = h.edges
|
|
left, right = edges[:-1], edges[1:]
|
|
left, right = edges[:-1], edges[1:]
|
|
x = np.array([left, right]).T.flatten()
|
|
x = np.array([left, right]).T.flatten()
|
|
y = np.array([counts, counts]).T.flatten()
|
|
y = np.array([counts, counts]).T.flatten()
|
|
|
|
|
|
plt.plot(x, y, *args, linewidth=line_width, **kwargs)
|
|
plt.plot(x, y, *args, linewidth=line_width, **kwargs)
|
|
if include_errors:
|
|
if include_errors:
|
|
- plt.errorbar(h.get_bin_centers(), h.counts, yerr=h.errors,
|
|
|
|
|
|
+ if h.errors_up is not None:
|
|
|
|
+ errors = np.vstack((h.errors_down, h.errors_up))
|
|
|
|
+ else:
|
|
|
|
+ errors = h.errors
|
|
|
|
+ plt.errorbar(h.bin_centers, h.counts, yerr=errors,
|
|
color='k', marker=None, linestyle='None',
|
|
color='k', marker=None, linestyle='None',
|
|
barsabove=True, elinewidth=.7, capsize=1)
|
|
barsabove=True, elinewidth=.7, capsize=1)
|
|
|
|
|
|
@@ -196,7 +200,7 @@ def hist2d_percent_contour(h: Hist1D, percent: float, axis: str):
|
|
values = np.cumsum(values, axis=axis_idx)
|
|
values = np.cumsum(values, axis=axis_idx)
|
|
idxs = np.argmax(values > percent, axis=axis_idx)
|
|
idxs = np.argmax(values > percent, axis=axis_idx)
|
|
|
|
|
|
- x_centers, y_centers = h.get_bin_centers()
|
|
|
|
|
|
+ x_centers, y_centers = h.bin_centers
|
|
|
|
|
|
if axis == 'x':
|
|
if axis == 'x':
|
|
return x_centers[idxs], y_centers
|
|
return x_centers[idxs], y_centers
|
|
@@ -270,6 +274,7 @@ def plot_hit_vs_layer(sample, region):
|
|
@mpb.decl_fig
|
|
@mpb.decl_fig
|
|
def plot_roc_curve(pfx, ext=''):
|
|
def plot_roc_curve(pfx, ext=''):
|
|
load_samples()
|
|
load_samples()
|
|
|
|
+ show_fr = pfx == "tracking"
|
|
|
|
|
|
def get_num_den(sample, basename):
|
|
def get_num_den(sample, basename):
|
|
num = Hist1D(sample[f'{basename}_num'])
|
|
num = Hist1D(sample[f'{basename}_num'])
|
|
@@ -280,9 +285,13 @@ def plot_roc_curve(pfx, ext=''):
|
|
sample_name = f'{proc}-{wp}'
|
|
sample_name = f'{proc}-{wp}'
|
|
eff, eff_err = get_num_den(sample, f'{pfx}_eff_v_phi{ext}')
|
|
eff, eff_err = get_num_den(sample, f'{pfx}_eff_v_phi{ext}')
|
|
pur, pur_err = get_num_den(sample, f'{pfx}_pur_v_phi{ext}')
|
|
pur, pur_err = get_num_den(sample, f'{pfx}_pur_v_phi{ext}')
|
|
- rows.append([wp,
|
|
|
|
- rf'${eff*100:0.2f}\pm{eff_err*100:0.2f}\%$',
|
|
|
|
- rf'${pur*100:0.2f}\pm{pur_err*100:0.2f}\%$'])
|
|
|
|
|
|
+ if show_fr:
|
|
|
|
+ fr, fr_err = get_num_den(sample, f'fake_rate_v_phi')
|
|
|
|
+
|
|
|
|
+ rows.append([wp,
|
|
|
|
+ rf'${eff*100:0.2f}\pm{eff_err*100:0.2f}\%$',
|
|
|
|
+ rf'${pur*100:0.2f}\pm{pur_err*100:0.2f}\%$',
|
|
|
|
+ rf'${fr*100:0.2f}\pm{fr_err*100:0.2f}\%$'])
|
|
|
|
|
|
plt.errorbar([pur], [eff], xerr=[pur_err], yerr=[eff_err],
|
|
plt.errorbar([pur], [eff], xerr=[pur_err], yerr=[eff_err],
|
|
label=sample_name, marker='o', color=color(proc, wp))
|
|
label=sample_name, marker='o', color=color(proc, wp))
|
|
@@ -296,12 +305,17 @@ def plot_roc_curve(pfx, ext=''):
|
|
plt.legend(loc='lower right')
|
|
plt.legend(loc='lower right')
|
|
|
|
|
|
col_labels = ['Sample', 'Working Point', 'Efficiency', 'Purity']
|
|
col_labels = ['Sample', 'Working Point', 'Efficiency', 'Purity']
|
|
|
|
+ if show_fr:
|
|
|
|
+ col_labels.append("Fake Rate")
|
|
row_labels = [r'$Z \rightarrow ee$', '', '', r'$t\bar{t}$', '', '']
|
|
row_labels = [r'$Z \rightarrow ee$', '', '', r'$t\bar{t}$', '', '']
|
|
return to_html_table(rows, col_labels, row_labels, 'table-condensed')
|
|
return to_html_table(rows, col_labels, row_labels, 'table-condensed')
|
|
|
|
|
|
|
|
|
|
@mpb.decl_fig
|
|
@mpb.decl_fig
|
|
-def plot_kinematic_eff(pref, ext='', xlim=(None, None), ylim=(None, None), norm=None, label_pfx='', incl_sel=True):
|
|
|
|
|
|
+def plot_kinematic_eff(pref, ext='', ylim=(None, None), norm=None, label_pfx='', incl_sel=True,
|
|
|
|
+ bins_pt=None, bins_eta=None, bins_phi=None,
|
|
|
|
+ xlim_pt=(None, None), xlim_eta=(None, None), xlim_phi=(None, None),
|
|
|
|
+ is_ratio=False):
|
|
load_samples()
|
|
load_samples()
|
|
ax_pt = plt.subplot(221)
|
|
ax_pt = plt.subplot(221)
|
|
ax_eta = plt.subplot(222)
|
|
ax_eta = plt.subplot(222)
|
|
@@ -312,34 +326,44 @@ def plot_kinematic_eff(pref, ext='', xlim=(None, None), ylim=(None, None), norm=
|
|
l = sample_name
|
|
l = sample_name
|
|
c = color(proc, wp)
|
|
c = color(proc, wp)
|
|
|
|
|
|
- def do_plot(ax, name):
|
|
|
|
|
|
+ def do_plot(ax, name, bins):
|
|
plt.sca(ax)
|
|
plt.sca(ax)
|
|
- h = Hist1D(sample[name], no_overflow=True)
|
|
|
|
- if norm:
|
|
|
|
- h = h / (norm*h.get_integral())
|
|
|
|
|
|
+ if is_ratio:
|
|
|
|
+ num = Hist1D(sample[name+"_num"], no_overflow=True)
|
|
|
|
+ den = Hist1D(sample[name+"_den"], no_overflow=True)
|
|
|
|
+ if bins:
|
|
|
|
+ num.rebin(bins)
|
|
|
|
+ den.rebin(bins)
|
|
|
|
+ h = num // den
|
|
|
|
+ else:
|
|
|
|
+ h = Hist1D(sample[name], no_overflow=True)
|
|
|
|
+ if norm:
|
|
|
|
+ h = h / (norm*h.integral)
|
|
|
|
+ if bins:
|
|
|
|
+ h.rebin(bins)
|
|
hist_plot(h, include_errors=errors, label=l, color=c)
|
|
hist_plot(h, include_errors=errors, label=l, color=c)
|
|
|
|
|
|
- do_plot(ax_pt, f'{pref}_v_pt{ext}')
|
|
|
|
- do_plot(ax_eta, f'{pref}_v_eta{ext}')
|
|
|
|
- do_plot(ax_phi, f'{pref}_v_phi{ext}')
|
|
|
|
|
|
+ do_plot(ax_pt, f'{pref}_v_pt{ext}', bins_pt)
|
|
|
|
+ do_plot(ax_eta, f'{pref}_v_eta{ext}', bins_eta)
|
|
|
|
+ do_plot(ax_phi, f'{pref}_v_phi{ext}', bins_phi)
|
|
|
|
|
|
plt.sca(ax_pt)
|
|
plt.sca(ax_pt)
|
|
- if not incl_sel: center_text(0.5, 0.15, r'$|\eta|<2.4$')
|
|
|
|
|
|
+ if not incl_sel: center_text(0.5, 0.15, r'$|\eta|<2.5$')
|
|
plt.xlabel(fr"{label_pfx} $p_T$")
|
|
plt.xlabel(fr"{label_pfx} $p_T$")
|
|
plt.ylim(ylim)
|
|
plt.ylim(ylim)
|
|
- plt.xlim(xlim)
|
|
|
|
|
|
+ plt.xlim(xlim_pt)
|
|
|
|
|
|
plt.sca(ax_eta)
|
|
plt.sca(ax_eta)
|
|
if not incl_sel: center_text(0.5, 0.15, r'$p_T>20$')
|
|
if not incl_sel: center_text(0.5, 0.15, r'$p_T>20$')
|
|
plt.xlabel(fr"{label_pfx} $\eta$")
|
|
plt.xlabel(fr"{label_pfx} $\eta$")
|
|
plt.ylim(ylim)
|
|
plt.ylim(ylim)
|
|
- plt.xlim(xlim)
|
|
|
|
|
|
+ plt.xlim(xlim_eta)
|
|
|
|
|
|
plt.sca(ax_phi)
|
|
plt.sca(ax_phi)
|
|
if not incl_sel: center_text(0.5, 0.15, r'$p_T>20$ and $|\eta|<2.4$')
|
|
if not incl_sel: center_text(0.5, 0.15, r'$p_T>20$ and $|\eta|<2.4$')
|
|
plt.xlabel(fr"{label_pfx} $\phi$")
|
|
plt.xlabel(fr"{label_pfx} $\phi$")
|
|
plt.ylim(ylim)
|
|
plt.ylim(ylim)
|
|
- plt.xlim(xlim)
|
|
|
|
|
|
+ plt.xlim(xlim_phi)
|
|
plt.tight_layout()
|
|
plt.tight_layout()
|
|
plt.legend(loc='upper left', bbox_to_anchor=(0.6, 0.45), bbox_transform=plt.gcf().transFigure)
|
|
plt.legend(loc='upper left', bbox_to_anchor=(0.6, 0.45), bbox_transform=plt.gcf().transFigure)
|
|
|
|
|
|
@@ -349,7 +373,7 @@ def plot_ecal_rel_res():
|
|
load_samples()
|
|
load_samples()
|
|
for sample_name, sample in samples.items():
|
|
for sample_name, sample in samples.items():
|
|
h = Hist1D(sample['ecal_energy_resolution'])
|
|
h = Hist1D(sample['ecal_energy_resolution'])
|
|
- h = h / h.get_integral()
|
|
|
|
|
|
+ h = h / h.integral
|
|
hist_plot(h, label=sample_name)
|
|
hist_plot(h, label=sample_name)
|
|
plt.xlabel(r"ECAL $E_T$ relative error")
|
|
plt.xlabel(r"ECAL $E_T$ relative error")
|
|
plt.legend()
|
|
plt.legend()
|
|
@@ -390,9 +414,9 @@ def simple_dist(hist_name, rebin=(), norm=1, xlabel="", ylabel="", xlim=None, yl
|
|
if rebin:
|
|
if rebin:
|
|
h.rebin(*rebin)
|
|
h.rebin(*rebin)
|
|
|
|
|
|
- mean = np.sum(h.get_counts() * h.get_bin_centers()) / h.get_integral()
|
|
|
|
|
|
+ mean = np.sum(h.counts * h.bin_centers) / h.integral
|
|
if norm is not None:
|
|
if norm is not None:
|
|
- h = h * (norm / h.get_integral())
|
|
|
|
|
|
+ h = h * (norm / h.integral)
|
|
hist_plot(h, label=f'{sample_name} ($\\mu={mean:.2f}$)',
|
|
hist_plot(h, label=f'{sample_name} ($\\mu={mean:.2f}$)',
|
|
color=color(proc, wp), line_width=line_width)
|
|
color=color(proc, wp), line_width=line_width)
|
|
if xlim:
|
|
if xlim:
|
|
@@ -411,7 +435,7 @@ def simple_dist2d(hist_name, proc, wp, xlabel="", ylabel="", xlim=None, ylim=Non
|
|
# sample_name = f'{proc}-{wp}'
|
|
# sample_name = f'{proc}-{wp}'
|
|
h = Hist2D(sample[hist_name])
|
|
h = Hist2D(sample[hist_name])
|
|
if norm is not None:
|
|
if norm is not None:
|
|
- h = h * (norm / h.get_integral())
|
|
|
|
|
|
+ h = h * (norm / h.integral)
|
|
plot_2d(h, colz_fmt='g')
|
|
plot_2d(h, colz_fmt='g')
|
|
if xlim:
|
|
if xlim:
|
|
plt.xlim(xlim)
|
|
plt.xlim(xlim)
|
|
@@ -431,7 +455,7 @@ def all_cut_plots(refresh=True, publish=False):
|
|
'number_of_seeds': (simple_dist, ('n_seeds',),
|
|
'number_of_seeds': (simple_dist, ('n_seeds',),
|
|
dict(xlabel='Number of Seeds', rebin=(50, -0.5, 200.5))),
|
|
dict(xlabel='Number of Seeds', rebin=(50, -0.5, 200.5))),
|
|
'number_of_good_seeds': (simple_dist, ('n_good_seeds',),
|
|
'number_of_good_seeds': (simple_dist, ('n_good_seeds',),
|
|
- dict(xlabel='Number of Good Seeds', rebin=(50, -0.5, 200.5))),
|
|
|
|
|
|
+ dict(xlabel='Number of Seeds', rebin=(50, -0.5, 200.5))),
|
|
'number_of_scls': (simple_dist, ('n_scl',),
|
|
'number_of_scls': (simple_dist, ('n_scl',),
|
|
dict(xlabel='Number of Super-Clusters', xlim=(-0.5, 25.5))),
|
|
dict(xlabel='Number of Super-Clusters', xlim=(-0.5, 25.5))),
|
|
'number_of_good_scls': (simple_dist, ('n_good_scl',),
|
|
'number_of_good_scls': (simple_dist, ('n_good_scl',),
|
|
@@ -442,6 +466,11 @@ def all_cut_plots(refresh=True, publish=False):
|
|
'number_of_gsf_tracks': (simple_dist, ('n_gsf_track',),
|
|
'number_of_gsf_tracks': (simple_dist, ('n_gsf_track',),
|
|
dict(xlabel='Number of reco electrons', xlim=(-0.5, 20.5))),
|
|
dict(xlabel='Number of reco electrons', xlim=(-0.5, 20.5))),
|
|
|
|
|
|
|
|
+ 'number_of_prompt': (simple_dist, ('n_prompt',),
|
|
|
|
+ dict(xlabel='Number of prompt electrons', xlim=(-0.5, 20.5))),
|
|
|
|
+ 'number_of_nonprompt': (simple_dist, ('n_nonprompt',),
|
|
|
|
+ dict(xlabel='Number of nonprompt electrons', xlim=(-0.5, 20.5))),
|
|
|
|
+
|
|
'number_of_matched': (simple_dist, ('n_matched',),
|
|
'number_of_matched': (simple_dist, ('n_matched',),
|
|
dict(xlabel='Number of matched electrons', xlim=(-0.5, 10.5), line_width=4)),
|
|
dict(xlabel='Number of matched electrons', xlim=(-0.5, 10.5), line_width=4)),
|
|
'number_of_merged': (simple_dist, ('n_merged',),
|
|
'number_of_merged': (simple_dist, ('n_merged',),
|
|
@@ -482,19 +511,6 @@ def all_cut_plots(refresh=True, publish=False):
|
|
'matched_dpT_dR': (simple_dist, ('matched_dpT_dR',),
|
|
'matched_dpT_dR': (simple_dist, ('matched_dpT_dR',),
|
|
dict(xlabel='dpT between sim and reco - dR Matched')),
|
|
dict(xlabel='dpT between sim and reco - dR Matched')),
|
|
|
|
|
|
- 'sim_pt': (simple_dist, ('sim_pt',),
|
|
|
|
- dict(xlabel='Sim Track $p_T$', xlim=(0, None))),
|
|
|
|
- 'sim_eta': (simple_dist, ('sim_eta',),
|
|
|
|
- dict(xlabel='Sim Track $eta$', rebin=(20, -3, 3))),
|
|
|
|
- 'sim_phi': (simple_dist, ('sim_phi',),
|
|
|
|
- dict(xlabel='Sim Track $phi$', rebin=(20, -3.14, 3.14), ylim=(0, None))),
|
|
|
|
- 'reco_pt': (simple_dist, ('reco_pt',),
|
|
|
|
- dict(xlabel='Reco Track $p_T$', xlim=(0, None))),
|
|
|
|
- 'reco_eta': (simple_dist, ('reco_eta',),
|
|
|
|
- dict(xlabel='Reco Track $eta$', rebin=(20, -3, 3))),
|
|
|
|
- 'reco_phi': (simple_dist, ('reco_phi',),
|
|
|
|
- dict(xlabel='Reco Track $phi$', rebin=(20, -3.14, 3.14), ylim=(0, None))),
|
|
|
|
-
|
|
|
|
'tm_corr': (simple_dist2d, ('tm_corr', 'zee', 'old-default'),
|
|
'tm_corr': (simple_dist2d, ('tm_corr', 'zee', 'old-default'),
|
|
dict(xlabel='Seed Matched', ylabel='Track Matched', norm=1)),
|
|
dict(xlabel='Seed Matched', ylabel='Track Matched', norm=1)),
|
|
|
|
|
|
@@ -510,18 +526,26 @@ def all_cut_plots(refresh=True, publish=False):
|
|
|
|
|
|
|
|
|
|
'good_sim_kinem': (plot_kinematic_eff, ('good_sim',),
|
|
'good_sim_kinem': (plot_kinematic_eff, ('good_sim',),
|
|
- dict(norm=1, ylim=(0, None))),
|
|
|
|
|
|
+ dict(norm=1, ylim=(0, None), bins_eta=30, bins_phi=30)),
|
|
'gsf_track_kinem': (plot_kinematic_eff, ('gsf_track',),
|
|
'gsf_track_kinem': (plot_kinematic_eff, ('gsf_track',),
|
|
- dict(norm=1, ylim=(0, None))),
|
|
|
|
|
|
+ dict(norm=1, ylim=(0, None), bins_eta=30, bins_phi=30)),
|
|
'seed_kinem': (plot_kinematic_eff, ('seed',),
|
|
'seed_kinem': (plot_kinematic_eff, ('seed',),
|
|
- dict(norm=1, ylim=(0, None))),
|
|
|
|
|
|
+ dict(norm=1, ylim=(0, None), bins_eta=30, bins_phi=30)),
|
|
'scl_kinem': (plot_kinematic_eff, ('scl',),
|
|
'scl_kinem': (plot_kinematic_eff, ('scl',),
|
|
- dict(norm=1, ylim=(0, None))),
|
|
|
|
|
|
+ dict(norm=1, ylim=(0, None), bins_eta=30, bins_phi=30)),
|
|
|
|
+ 'prompt_kinem': (plot_kinematic_eff, ('prompt',),
|
|
|
|
+ dict(norm=1, ylim=(0, None), bins_pt=30, bins_eta=30, bins_phi=30)),
|
|
|
|
+ 'nonprompt_kinem': (plot_kinematic_eff, ('nonprompt',),
|
|
|
|
+ dict(norm=1, ylim=(0, None), xlim_pt=(0, 5), bins_eta=30, bins_phi=30)),
|
|
}
|
|
}
|
|
|
|
|
|
def add_num_den(key, func, args, kwargs):
|
|
def add_num_den(key, func, args, kwargs):
|
|
- figures[key] = (func, args, dict(**kwargs, ylim=(0, 1.1)))
|
|
|
|
base_ext = kwargs.get('ext', '')
|
|
base_ext = kwargs.get('ext', '')
|
|
|
|
+ bins_pt_ = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300]
|
|
|
|
+ kwargs['bins_pt'] = kwargs.get('bins_pt', bins_pt_)
|
|
|
|
+ kwargs['bins_eta'] = kwargs.get('bins_eta', 15)
|
|
|
|
+ kwargs['bins_phi'] = kwargs.get('bins_phi', 15)
|
|
|
|
+ figures[key] = (func, args, dict(**kwargs, ylim=(0, 1.1), is_ratio=True))
|
|
kwargs_ = kwargs.copy()
|
|
kwargs_ = kwargs.copy()
|
|
kwargs_['ext'] = base_ext+'_num'
|
|
kwargs_['ext'] = base_ext+'_num'
|
|
figures[key+'_num'] = (func, args, kwargs_)
|
|
figures[key+'_num'] = (func, args, kwargs_)
|
|
@@ -533,13 +557,26 @@ def all_cut_plots(refresh=True, publish=False):
|
|
add_num_den('tracking_pur', plot_kinematic_eff, ('tracking_pur',), dict(incl_sel=False))
|
|
add_num_den('tracking_pur', plot_kinematic_eff, ('tracking_pur',), dict(incl_sel=False))
|
|
add_num_den('tracking_eff_dR', plot_kinematic_eff, ('tracking_eff',), dict(ext='_dR', incl_sel=False))
|
|
add_num_den('tracking_eff_dR', plot_kinematic_eff, ('tracking_eff',), dict(ext='_dR', incl_sel=False))
|
|
add_num_den('tracking_pur_dR', plot_kinematic_eff, ('tracking_pur',), dict(ext='_dR', incl_sel=False))
|
|
add_num_den('tracking_pur_dR', plot_kinematic_eff, ('tracking_pur',), dict(ext='_dR', incl_sel=False))
|
|
|
|
+ add_num_den('prompt_eff', plot_kinematic_eff, ('prompt_eff',), dict(incl_sel=False))
|
|
|
|
+ add_num_den('prompt_pur', plot_kinematic_eff, ('prompt_pur',), dict(incl_sel=False))
|
|
|
|
+ add_num_den('prompt_eff_dR', plot_kinematic_eff, ('prompt_eff',), dict(ext='_dR', incl_sel=False))
|
|
|
|
+ add_num_den('prompt_pur_dR', plot_kinematic_eff, ('prompt_pur',), dict(ext='_dR', incl_sel=False))
|
|
|
|
+ add_num_den('nonprompt_eff', plot_kinematic_eff, ('nonprompt_eff',), dict(incl_sel=False))
|
|
|
|
+ add_num_den('nonprompt_pur', plot_kinematic_eff, ('nonprompt_pur',), dict(incl_sel=False))
|
|
|
|
+ add_num_den('nonprompt_eff_dR', plot_kinematic_eff, ('nonprompt_eff',), dict(ext='_dR', incl_sel=False))
|
|
|
|
+ add_num_den('nonprompt_pur_dR', plot_kinematic_eff, ('nonprompt_pur',), dict(ext='_dR', incl_sel=False))
|
|
|
|
+
|
|
add_num_den('seeding_eff', plot_kinematic_eff, ('seed_eff',), dict(incl_sel=False))
|
|
add_num_den('seeding_eff', plot_kinematic_eff, ('seed_eff',), dict(incl_sel=False))
|
|
add_num_den('seeding_pur', plot_kinematic_eff, ('seed_pur',), dict(incl_sel=False))
|
|
add_num_den('seeding_pur', plot_kinematic_eff, ('seed_pur',), dict(incl_sel=False))
|
|
|
|
+
|
|
add_num_den('fake_rate_incl', plot_kinematic_eff, ('fake_rate_incl',), {})
|
|
add_num_den('fake_rate_incl', plot_kinematic_eff, ('fake_rate_incl',), {})
|
|
|
|
+ add_num_den('fake_rate_no_e_match_incl', plot_kinematic_eff, ('fake_rate_no_e_match_incl',), {})
|
|
add_num_den('partial_fake_rate_incl', plot_kinematic_eff, ('partial_fake_rate_incl',), {})
|
|
add_num_den('partial_fake_rate_incl', plot_kinematic_eff, ('partial_fake_rate_incl',), {})
|
|
add_num_den('full_fake_rate_incl', plot_kinematic_eff, ('full_fake_rate_incl',), {})
|
|
add_num_den('full_fake_rate_incl', plot_kinematic_eff, ('full_fake_rate_incl',), {})
|
|
add_num_den('clean_fake_rate_incl', plot_kinematic_eff, ('clean_fake_rate_incl',), {})
|
|
add_num_den('clean_fake_rate_incl', plot_kinematic_eff, ('clean_fake_rate_incl',), {})
|
|
|
|
+ #
|
|
add_num_den('fake_rate', plot_kinematic_eff, ('fake_rate',), dict(incl_sel=False))
|
|
add_num_den('fake_rate', plot_kinematic_eff, ('fake_rate',), dict(incl_sel=False))
|
|
|
|
+ add_num_den('fake_rate_no_e_match', plot_kinematic_eff, ('fake_rate_no_e_match',), dict(incl_sel=False))
|
|
add_num_den('partial_fake_rate', plot_kinematic_eff, ('partial_fake_rate',), dict(incl_sel=False))
|
|
add_num_den('partial_fake_rate', plot_kinematic_eff, ('partial_fake_rate',), dict(incl_sel=False))
|
|
add_num_den('full_fake_rate', plot_kinematic_eff, ('full_fake_rate',), dict(incl_sel=False))
|
|
add_num_den('full_fake_rate', plot_kinematic_eff, ('full_fake_rate',), dict(incl_sel=False))
|
|
add_num_den('clean_fake_rate', plot_kinematic_eff, ('clean_fake_rate',), dict(incl_sel=False))
|
|
add_num_den('clean_fake_rate', plot_kinematic_eff, ('clean_fake_rate',), dict(incl_sel=False))
|
|
@@ -568,9 +605,9 @@ def all_cut_plots(refresh=True, publish=False):
|
|
output=f'hists.html',
|
|
output=f'hists.html',
|
|
source=__file__)
|
|
source=__file__)
|
|
|
|
|
|
- mpb.generate_report(figures, 'Update',
|
|
|
|
- output='report.html',
|
|
|
|
- body='../docs/reports/report_2018_05_30.md')
|
|
|
|
|
|
+ # mpb.generate_report(figures, 'Update',
|
|
|
|
+ # output='report.html',
|
|
|
|
+ # body='../docs/reports/report_2018_05_30.md')
|
|
if publish:
|
|
if publish:
|
|
mpb.publish()
|
|
mpb.publish()
|
|
|
|
|