|
@@ -20,6 +20,14 @@
|
|
|
|
|
|
\usetheme[]{bjeldbak}
|
|
|
|
|
|
+\newcommand{\backupbegin}{
|
|
|
+ \newcounter{finalframe}
|
|
|
+ \setcounter{finalframe}{\value{framenumber}}
|
|
|
+}
|
|
|
+\newcommand{\backupend}{
|
|
|
+ \setcounter{framenumber}{\value{finalframe}}
|
|
|
+}
|
|
|
+
|
|
|
\begin{document}
|
|
|
|
|
|
\title[$e$ Seeding Validation]{Off-line Electron Seeding Validation \-- Update}
|
|
@@ -47,7 +55,7 @@
|
|
|
\item Show first set of \textbf{optimized} windows
|
|
|
\item Next steps
|
|
|
\end{itemize}
|
|
|
- \item Full set of results is available here \url{https://eg.fangmeier.tech/seeding\_studies\_2018\_02\_15\_12/output/}
|
|
|
+ \item Full set of results is available here \url{https://eg.fangmeier.tech/seeding\_studies\_2018\_02\_15\_18/output/}
|
|
|
\end{itemize}
|
|
|
\end{frame}
|
|
|
|
|
@@ -90,7 +98,7 @@
|
|
|
\item x2.0(\texttt{wide})
|
|
|
\item x3.0(\texttt{extra-wide})
|
|
|
\end{itemize}
|
|
|
- \item Uniform scaling draws out a clear curve in efficiency v. purity.
|
|
|
+ \item Uniform scaling draws out a clear curve in Efficiency V. Purity.
|
|
|
\item But can we do better? Find windows with points above the curve?
|
|
|
\end{itemize}
|
|
|
\end{column}
|
|
@@ -102,13 +110,13 @@
|
|
|
\end{columns}
|
|
|
\end{frame}
|
|
|
|
|
|
-\begin{frame}{Finding more optimal windows}
|
|
|
+\begin{frame}{Finding more optimal windows (Ex. 1)}
|
|
|
\begin{columns}
|
|
|
\begin{column}{0.32\textwidth}
|
|
|
\begin{itemize}
|
|
|
\item Figure: first-hit $\delta \phi$ 99\% contours for all relevant\footnotemark pixel regions.
|
|
|
\item Procedure: Select a cut that tends to reasonably follow the 99\% contours in the \texttt{extra-wide} windows.
|
|
|
- \item Repeat this for each of the six windows.
|
|
|
+ \item Repeat this for each of the five windows.
|
|
|
\item In this case, the \texttt{narrow} window seemed appropriate so this particular window was unchanged.
|
|
|
\end{itemize}
|
|
|
\end{column}
|
|
@@ -118,10 +126,10 @@
|
|
|
\end{figure}
|
|
|
\end{column}
|
|
|
\end{columns}
|
|
|
- \footnotetext[1]{meaning the subdetectors that have a substantial portion of first hits}
|
|
|
+ \footnotetext[1]{meaning the sub-detectors that have a substantial portion of first hits}
|
|
|
\end{frame}
|
|
|
|
|
|
-\begin{frame}{Finding more optimal windows \-- 2}
|
|
|
+\begin{frame}{Finding more optimal windows (Ex. 2)}
|
|
|
\begin{columns}
|
|
|
\begin{column}{0.32\textwidth}
|
|
|
\begin{itemize}
|
|
@@ -142,7 +150,8 @@
|
|
|
\begin{columns}
|
|
|
\begin{column}{0.32\textwidth}
|
|
|
\begin{itemize}
|
|
|
- \item New working point sets slightly above the linear-scaling curve
|
|
|
+ \item New Working Point lies basically on the linear-scaling curve
|
|
|
+ \item However, NWP with extra-narrow first $\delta \phi$ window sets slightly above the curve
|
|
|
\item Hints that better performance is achievable, but it's not obvious how to achieve
|
|
|
\item Many ways to vary parameters...
|
|
|
\end{itemize}
|
|
@@ -165,12 +174,15 @@
|
|
|
\item Other Thoughts
|
|
|
\begin{itemize}
|
|
|
\item What is an appropriate working point, and what performance can be deemed adequate?
|
|
|
- \item Are there different figures-of-merit that must be balanced (cpu performance, specific background rejections.)?
|
|
|
+ \item Are there different figures-of-merit that must be balanced (CPU performance, specific background rejections.)?
|
|
|
\end{itemize}
|
|
|
\end{itemize}
|
|
|
\vspace{1.5in}
|
|
|
\end{frame}
|
|
|
|
|
|
+\appendix
|
|
|
+\backupbegin
|
|
|
+
|
|
|
\begin{frame}
|
|
|
\begin{center}
|
|
|
{\Huge BACKUP}
|
|
@@ -334,5 +346,6 @@
|
|
|
\vspace{0.1in} \hrule \vspace{0.1in}
|
|
|
{\footnotesize $^1$Exact, rather than minimum to deal with duplicate seeds in input collection. Could switch to minimum with offline cross-cleaned seeds.}
|
|
|
\end{frame}
|
|
|
+\backupend
|
|
|
|
|
|
\end{document}
|